Eigenschaften von Gruppen

Theorem: In Jeder Gruppe (G, \circ, e) gilt

- i) Jedes linksneutrale Element e ist auch rechtsneutral, dass heisst, es gilt $\forall a \in G : a \circ e = a$. Wir nennen e darum kurz neutrales Element von G.
- ii) Jedes zu $a \in G$ linksinverse Element a' ist auch rechtsinverse, dass heisst, es gilt $a \circ a' = e$. Wir nennen a' darum kurz inverses Element zu a.
- iii) Das neutrale Element von G ist eindeutig bestimmt.
- iv) Zu jedem $a \in G$ ist das inverse Element eindeutig bestimmt. Wir bezeichnen es mit a^{-1} .
- $v) \ \forall a \in G : (a^{-1})^{-1} = a.$
- $vi) \ \forall a, b \in G : (a \circ b)^{-1} = b^{-1} \circ a^{-1}.$
- $vii) \ \forall a, b \in G \exists ! x \in G : a \circ x = b$
- $viii) \ \forall a, b \in G \exists ! y \in G : y \circ a = b$
 - $(ix) \ \forall a, b, c \in G : b = c \iff a \circ b = a \circ c$
 - $(x) \ \forall a, b, c \in G : b = c \iff b \circ a = c \circ a$