Serie 6:

Basis, Dimension und Quotientenräume

1. a) " \Rightarrow ": Angenommen ad - bc = 0 mit $d \neq 0$ oder $b \neq 0$, dann gilt

$$d \begin{pmatrix} a \\ b \end{pmatrix} - b \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} ad - bc \\ bd - bd \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Also ist \mathcal{B} keine Basis.

Falls b=d=0, dann ist $\mathcal{B}=\{\left(\begin{smallmatrix} a\\0 \end{smallmatrix}\right),\left(\begin{smallmatrix} c\\0 \end{smallmatrix}\right)\}$ sicher nicht linear unabhängig. Wir haben also gezeigt, dass für jede Basis $\mathcal{B}=\{\left(\begin{smallmatrix} a\\b \end{smallmatrix}\right),\left(\begin{smallmatrix} c\\d \end{smallmatrix}\right)\}$ von \mathbb{C}^2 gilt $ad-bc\neq 0$.

": Angenommen $D:=ad-bc\neq 0$ und $\binom{x}{y}\in\mathbb{C}^2$. Definiere

$$\alpha := \frac{dx - cy}{D}$$
 $\beta := \frac{-bx + ay}{D}$

dann gilt

$$\alpha \begin{pmatrix} a \\ b \end{pmatrix} + \beta \begin{pmatrix} c \\ d \end{pmatrix} = \frac{1}{D} \begin{pmatrix} (dx - cy)a + (-bx + ay)c \\ (dx - cy)b + (-bx + ay)d \end{pmatrix}$$
$$= \frac{1}{D} \begin{pmatrix} (ad - bc)x \\ (ad - bc)y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Also ist $\mathcal{B} = \{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} \}$ ein Erzeugendensystem von \mathbb{C}^2 und da $\dim \mathbb{C} = 2$ (als Vektorraum über \mathbb{C}), folgt dass \mathcal{B} eine Basis ist.

b) Die Mengen $\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\}$ und $\{\begin{pmatrix} 2\\0 \end{pmatrix}, \begin{pmatrix} 0\\2 \end{pmatrix}\}$ sind disjunkt und gemäss Teil (a) Basen von \mathbb{C}^2 .

2. a) Da W ein Vektorraum ist, gilt $w - w = 0 \in W$ für alle $w \in W$, also ist R reflexiv.

Falls $v_1-v_2\in W$, dann ist auch $-(v_1-v_2)=v_2-v_1\in W$ und R ist symmetrisch. Da W unter Addition abgeschlossen ist, gilt für $v_1-v_2\in W$ und $v_2-v_3\in W$ auch

$$v_1 - v_3 = (v_1 - v_2) + (v_2 - v_3) \in W$$

Also ist R transitiv und somit eine Äquivalenzrelation.

b) Angenommen $v_1 \sim v_2$ und $v_1' \sim v_2'$, dann existieren $w, w' \in W$ so dass $v_1 = v_2 + w$ und $v_1' = v_2' + w'$. Also ist

$$(v_2 + v_2') - (v_1 + v_1') = w + w' \in W$$

Es folgt also $[v_2 + v_2'] = [v_1 + v_1']$ und somit hängt die Addition nicht von der Wahl der Repräsentanten ab und ist wohldefiniert.

Sei $\lambda \in \mathbb{K}$, dann ist

$$\lambda v_2 - \lambda v_1 = \lambda w \in W$$

Es folgt also $[\lambda v_2] = [\lambda v_1]$ und somit hängt die skalare Multiplikation nicht von der Wahl des Repräsentanten ab und ist wohldefiniert.

Die Vektorraumaxiome folgen sofort aus den Vektorraumaxiomen für V. Seien $u,v,w\in V,\,\lambda,\mu\in\mathbb{K},\,\mathrm{dann}$

V1.
$$[u] + [v] = [u + v] = [v + u] = [v] + [u]$$

V2.
$$([u] + [v]) + [w] = [u + v] + [w] = [(u + v) + w] = [u + (v + w)] = [u] + [v + w] = [u] + ([v] + [w])$$

V3.
$$[0_V] + [v] = [0_V + v] = [v]$$

V4.
$$[-v] + [v] = [-v + v] = [0_V]$$

V5.
$$1 \cdot [v] = [1 \cdot v] = [v]$$

V6.
$$(\lambda \mu) \cdot [v] = [(\lambda \mu) \cdot v] = [\lambda(\mu \cdot v)] = \lambda[\mu \cdot v] = \lambda(\mu \cdot [v])$$

V7.
$$\lambda \cdot ([u] + [v]) = \lambda \cdot [u + v] = [\lambda \cdot (u + v)] = [\lambda \cdot u + \lambda \cdot v] = [\lambda \cdot u] + [\lambda \cdot v] = \lambda \cdot [u] + \lambda \cdot [v]$$

V8.
$$(\lambda + \mu) \cdot [v] = [(\lambda + \mu) \cdot v] = [\lambda \cdot v + \mu \cdot v] = [\lambda \cdot v] + [\mu \cdot v] = \lambda \cdot [v] + \mu \cdot [v]$$

Also ist $V/_{\sim}$ mit diesen Verknüpfungen ein Vektorraum über \mathbb{K} .

c) Wir definieren $\Phi(v+W):=[v]$. Wir müssen zuerst zeigen, dass die Abbildung wohldefiniert ist. Seien also $v_1,v_2\in V$, so dass $v_1+W=v_2+W$, dann existiert für jedes $w_1\in W$ ein $w_2\in W$, so dass $v_1+w_1=v_2+w_2$. Für $w_1=0$ folgt insbesondere, dass $v_1=v_2+w$ für ein $w\in W$, also $v_1-v_2\in W$ und also $[v_1]=[v_2]$. Somit ist das Bild von v+W unter Φ nicht vom Repräsentanten von v+W abhängig und Φ also wohldefiniert.

Für die geforderte *Linearität* berechnen wir für $u, v \in V$ und $\lambda \in \mathbb{K}$

$$\Phi((u+W) + (v+W)) = \Phi((u+v) + W) = [u+v] = [u] + [v]$$

$$= \Phi(u+W) + \Phi(v+W)$$

$$\Phi(\lambda \cdot (u+W)) = \Phi(\lambda \cdot u + W) = [\lambda \cdot u]$$

$$= \lambda \cdot [u] = \lambda \cdot \Phi(u+W)$$

Die Abbildung ist sicherlich surjektiv, da jedes Element in $x \in V/_{\sim}$ per Definition von der Form x = [v] für ein $v \in V$, also auch $x = \Phi(v+W)$. Für die Injektivität nehmen wir an, dass $u, v \in V$ mit $\Phi(u+W) = \Phi(v+W)$, also [u] = [v]. Dann gilt $u-v \in W$ und folglich existiert $w \in W$ so dass u=v+w. Wir müssen nun daraus folgern, dass u+W=v+W. Sei $w' \in W$, dann ist $u+w'=(v+w)+w'=v+(w+w')\in v+W$ und also $u+W\subset v+W$, da $w'\in W$ beliebig war. Andererseits gilt für beliebige $w'\in W$ auch $v+w'=(u-w)+w'=u+(-w+w')\in u+W$ und also $v+W\subset u+W$, und folglich u+W=v+W. Also ist Φ bijektiv.

3. Wähle eine Basis x_1, \ldots, x_m von V/W. Per definitionem existieren $u_1, \ldots, u_m \in V$, so dass $x_i = u_i + W$. Sei $U := \langle u_1, \ldots, u_m \rangle$. Wir behaupten, dass $V = W \oplus U$. Wir zeigen zuerst, dass $U \cap W = \{0_V\}$. Angenommen $v = \lambda_1 u_1 + \cdots + \lambda_m u_m \in U \cap W$, dann ist wegen $v \in W$

$$0v_{/W} = v + W = (\lambda_1 u_1 + \dots + \lambda_m u_m) + W$$
$$= \lambda_1 (u_1 + W) + \dots + \lambda_m (u_m + W)$$
$$= \lambda_1 x_1 + \dots + \lambda_m x_m$$

und folglich $\lambda_1=\cdots=\lambda_m=0$, also auch $U\cap W=\{0_V\}$. Wegen $\dim U=m=\dim V/W$ folgt

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$
$$= (\dim V - \dim W) + \dim W + 0 = \dim V$$

und folglich ist U+W=V. Also insbesondere $V=U\oplus W$.

4. Wir wissen aus der Vorlesung, dass $V=W_1\oplus W_2$, d.h. für alle $A\in V$ existieren eindeutige $B\in W_1, C\in W_2$, so dass A=B+C. Seien nämlich $A\in V, B, B'\in W_1$ und $C,C'\in W_2$, so dass A=B+C=B'+C', dann ist $B-B'=C'-C\in W_1\cap W_2$ und folglich B=B' und C=C'.

Gegeben $A \in V$, dann schreiben wir $A_{sym} \in W_1$ und $A_{skew} \in W_2$ für die eindeutig bestimmten Elemente mit

$$A = A_{sym} + A_{skew}$$

Definiere

$$\Phi: V/_{W_1} \to W_2, A + W_1 \mapsto A_{skew}$$

Wir müssen zeigen, dass die Abbildung wohldefiniert ist. Angenommen $A, A' \in V$ mit $A + W_1 = A' + W_1$. Da $0 \in W_1$, existiert ein $B \in W_1$, so dass A' = A + B, folglich gilt

$$A' = A + B = (A_{sym} + A_{skew}) + B$$
$$= \underbrace{(A_{sym} + B)}_{\in W_1} + A_{skew}$$

Es gilt also $A'_{skew} = A_{skew}$ und somit ist Φ wohldefiniert. Wir überprüfen die Linearität. Seien $A, B \in V$, dann ist

$$A + B = (A_{sym} + A_{skew}) + (B_{sym} + B_{skew})$$
$$= \underbrace{(A_{sym} + B_{sym})}_{\in W_1} + \underbrace{(A_{skew} + B_{skew})}_{\in W_2}$$

Also ist $(A + B)_{skew} = A_{skew} + B_{skew}$ und folglich

$$\Phi((A + W_1) + (B + W_1)) = \Phi((A + B) + W_1) = (A + B)_{skew}$$
$$= A_{skew} + B_{skew}$$
$$= \Phi(A + W_1) + \Phi(B + W_1)$$

Ähnlich gilt für $\lambda \in \mathbb{R}$, dass

$$\lambda \cdot A = \lambda \cdot (A_{sym} + A_{skew}) = \underbrace{\lambda \cdot A_{sym}}_{\in W_1} + \underbrace{\lambda \cdot A_{skew}}_{\in W_2}$$

Also ist $(\lambda \cdot A)_{skew} = \lambda \cdot A_{skew}$. Es folgt

$$\Phi(\lambda \cdot (A + W_1)) = \Phi(\lambda \cdot A + W_1) = \lambda \cdot A_{skew} = \lambda \cdot \Phi(A)$$

Es bleibt zu zeigen, dass Φ eine Bijektion ist. Φ ist sicherlich surjektiv, da für jedes $A \in W_2$ gilt $\Phi(A+W_1)=A$. Seien also $A,B \in V$ mit $\Phi(A+W_1)=\Phi(B+W_1)$, dann gilt

$$0 = \Phi(A + W_1) - \Phi(B + W_1)$$

= $\Phi((A + W_1) - (B + W_1))$
= $\Phi((A - B) + W_1)$

Also ist $0 = (A - B)_{skew} = A_{skew} - B_{skew}$ und somit folgt

$$A = A_{sym} + A_{skew} = A_{sym} + B_{skew} = \underbrace{(A_{sym} - B_{sym})}_{\in W_1} + B$$

Also ist $A + W_1 = B + W_2$ und somit ist Φ injektiv.