Sommer 2017

1. (15 Punkte)

a) Geben Sie die Definition einer Relation auf einer Menge M an. Geben Sie die Axiome an, die eine Relation erfüllen muss, damit es sich um eine Äquivalenzrelation handelt.

Wir definieren eine Relation auf $Gl_{n\times n}(\mathbb{R})$ wie folgt: $A, B \in Gl_{n\times n}(\mathbb{R})$ erfüllen $A \sim B$, wenn für alle $v \in \mathbb{R}^n$ ein $\lambda \in \mathbb{R} \setminus \{0\}$ existiert, sodass $Av = \lambda Bv$ gilt.

- b) Zeigen Sie, dass \sim eine Äquivalenzrelation definiert.
- c) Sei $A \in Gl_{n \times n}(\mathbb{R})$. Bestimmen Sie die Äquivalenzklasse von A.

Lösung

a) Eine Relation auf M ist eine Teilmenge $R \subset M \times M$. Eine Relation ist genau dann eine Äquivalenzrelation, wenn sie die folgenden Eigenschaften besitzt:

Reflexivität: Der Graph der Identitätsabbildung ist eine Teilmenge von R.

Symmetrie: R ist invariant unter Transposition, d.h. $\forall (x,y) \in R : (y,x) \in R$.

Transitivität $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$.

b) **Reflexivität:** Sei $A \in Gl_n(\mathbb{R})$, dann ist $Av = 1 \cdot Av$ für alle $v \in \mathbb{R}^n$, und somit gilt $A \sim A$.

Symmetrie: Sei $B \in Gl_n(\mathbb{R})$, sodass $A \sim B$ ist. Sei $v \in \mathbb{R}^n$. Wir zeigen, dass $\lambda \in \mathbb{R}^*$ existiert, sodass $Bv = \lambda Av$ ist. Nach Voraussetzung existiert ein $\mu \in \mathbb{R}^*$, sodass $Av = \mu Bv$, und somit für $\lambda = \mu^{-1}$ also $Bv = \lambda Av$.

Transitivität: Sei $C \in \operatorname{Gl}_n(\mathbb{R})$, sodass $B \sim C$ ist (und sei weiterhin $A \sim B$). Sei $v \in \mathbb{R}^n$. Wir zeigen, dass $\lambda \in \mathbb{R}^*$ existiert, sodass $Av = \lambda Cv$ ist. Nach Voraussetzung existieren $\mu_1, \mu_2 \in \mathbb{R}^*$, sodass $Av = \mu_1 Bv$ sowie $Bv = \mu_2 Cv$. Also ist $Av = \mu_1 \mu_2 Cv$ und da $\mu_1 \mu_2 \in \mathbb{R}^*$ ist, folgt $A \sim C$.

c) Angenommen $A \sim B$, dann ist jeder von 0 verschiedene Vektor ein Eigenvektor von $B^{-1}A$. Insbesondere besitzt \mathbb{R}^n eine Basis v_1,\ldots,v_n bestehend aus Eigenvektoren von $B^{-1}A$. Seien $\lambda_1,\ldots,\lambda_n\in\mathbb{R}^*$, sodass $B^{-1}Av_i=\lambda_iv_i$ ist. Setze $v=v_1+\cdots+v_n$ und sei $\lambda\in\mathbb{R}^*$, sodass $B^{-1}Av=\lambda v$. Dann folgt

$$0 = \lambda v - B^{-1} A v = \lambda \sum_{i=1}^{n} v_i - \sum_{i=1}^{n} B^{-1} A v_i = \sum_{i=1}^{n} (\lambda - \lambda_i) v_i.$$

Da nach Voraussetzung $v_1 \ldots, v_n$ eine Basis von \mathbb{R}^n ist, ist also $\lambda_i = \lambda$ für alle $1 \leq i \leq n$ und somit $B^{-1}Av = \lambda v$ für alle $v \in \mathbb{R}^n$. Es folgt $\lambda^{-1}A = B$ und somit gilt $A \sim B \Rightarrow \exists \lambda \in \mathbb{R}^* : B = \lambda A$. Andererseits ist klar, dass für $B \in \mathrm{Gl}_n(\mathbb{R})$ von der Form $B = \lambda^{-1}A$ für ein $\lambda \in \mathbb{R}^*$ gilt $Av = \lambda(\lambda^{-1}A)v = \lambda Bv$ für alle $v \in \mathbb{R}^n$. Also ist

$$[A]_{\sim} = \{ \lambda A \mid \lambda \in \mathbb{R}^* \}.$$

- **2.** (15 Punkte) Sei V der \mathbb{R} -Vektorraum aller Polynome vom Grad ≤ 2 mit reellen Koeffizienten.
 - a) Zeigen Sie, dass die Polynome $p_1(x) = 3x^2 + 2x + 1$, $p_2(x) = x^2 + x$, $p_3(x) = 2x^2 + x$ eine Basis von V bilden.
 - b) Sei $T:V\to V$ die Abbildung $p(x)\mapsto x\cdot p'(x)$. Zeigen Sie, dass T eine wohldefinierte (d.h. $T(p)\in V$ für alle $p\in V$) lineare Abbildung ist.
 - c) Ist T invertierbar?
 - d) Bestimmen Sie die Darstellungsmatrix von T bezüglich der Basis $\mathcal{B}=(p_1,p_2,p_3)$ von V.
 - e) Bestimmen Sie das Urbild von $\{x^2\}$ unter T.

Lösung

a) Sei $\mathcal{E}=(1,x,x^2)$, dann ist \mathcal{E} eine Basis von V und es ist $\mathcal{B}=(p_1,p_2,p_3)$ das Bild von \mathcal{E} unter der Abbildung $S:V\to V$ mit Darstellungsmatrix

$$[S]_{\mathcal{E}}^{\mathcal{E}} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}.$$

Man berechnet det(S) = 1 und somit ist S invertierbar. Da S invertierbar ist, bildet S Basen auf Basen ab und weil \mathcal{E} eine Basis von V ist, ist somit \mathcal{B} eine Basis von V.

b) Wir wissen, dass die Ableitung linear ist (da punktweise linear: in der Analysis wurde gezeigt, dass

$$\lim_{n \to \infty} \alpha a_n + b_n = \alpha \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

gilt, wann immer $(a_n), (b_n)$ konvergente Folgen in $\mathbb C$ und $\alpha \in \mathbb C$ sind – die Studierenden müssen dies aber nicht ausführen). Die Abbildung $p \mapsto xp$ ist linear, da die Multiplikation im Ring $P(\mathbb R)$ distributiv und kommutativ ist. Folglich ist die Abbildung $p \mapsto xp'(x)$ eine Komposition linearer Abbildungen und damit linear.

Wir wissen aus der Analysis, dass $\deg(p') = \deg(p) - 1$ gilt, wann immer p nicht konstant ist und für konstante p ist p' = 0. Insbesondere ist $p' \in P_{\leq 1}(\mathbb{R})$ wann immer $p \in P_{\leq 2}(\mathbb{R})$ ist und wegen $\deg(pq) = \deg(p) + \deg(q)$ für alle p, q folgt $\deg(xp') = \deg(x) + \deg(p') \leq 1 + 1 = 2$ für alle $p \in V$.

- c) Wie oben erwähnt, gilt $\deg(Tp) = 1 + \deg(p')$. Da $\deg(p') \in \mathbb{N}_0 \cup \{-\infty\}$ ist, gilt $\deg(Tp) \neq 0$. Folglich enthält das Bild von T keine von 0 verschiedenen konstanten Polynome und somit ist T nicht surjektiv. Insbesondere also nicht invertierbar.
- d) Es ist

$$[I_V]_{\mathcal{B}}^{\mathcal{E}}[T]_{\mathcal{B}}^{\mathcal{B}} = [T]_{\mathcal{B}}^{\mathcal{E}} = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 1 & 1 \\ 6 & 2 & 4 \end{pmatrix}.$$

Wir müssen also nur $([I_V]_{\mathcal{B}}^{\mathcal{E}})^{-1}$ berechnen. Man beachte, dass $[I_V]_{\mathcal{B}}^{\mathcal{E}} = [S]_{\mathcal{E}}^{\mathcal{E}}$. Gauss-Elimination liefert

$$([S]_{\mathcal{E}}^{\mathcal{E}}|I_{4}) \xrightarrow{Z_{2} \to Z_{2} - 2Z_{1}} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 1 & 2 & -3 & 0 & 1 \end{pmatrix}$$

$$Z_{3} \to Z_{3} - Z_{2} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{pmatrix}$$

$$Z_{2} \to Z_{2} - Z_{3} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 2 & -1 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{pmatrix}$$

und folglich ist

$$([I_V]_{\mathcal{B}}^{\mathcal{E}})^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

und somit

$$[T]_{\mathcal{B}}^{\mathcal{B}} = ([I_V]_{\mathcal{B}}^{\mathcal{E}})^{-1}[T]_{\mathcal{B}}^{\mathcal{E}} = \begin{pmatrix} 0 & 0 & 0 \\ -2 & 0 & -2 \\ 4 & 1 & 3 \end{pmatrix}$$

e) Es ist $T^{-1}(x^2)$ die Lösungsmenge des Gleichungssystems $Tp=x^2$ und somit von der Form $p_0+{\rm Ker}(T)$ für ein beliebiges Polynom p_0 , sodass $Tp_0=x^2$ gilt. Wir haben bereits gesehen, dass $P_{\leq 0}(\mathbb{R})\subset {\rm Ker}(T)$ und weil die Darstellungsmatrix von T bezüglich $\mathcal E$ die Form

$$[T]_{\mathcal{E}}^{\mathcal{E}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

und somit Rang 2 besitzt, ist $\operatorname{Ker}(T)$ eindimensional und folglich $\operatorname{Ker}(T) = P_{\leq 0}(\mathbb{R})$. Es ist $T(\frac{1}{2}x^2) = x^2$ und folglich

$$T^{-1}(x^2) = \frac{1}{2}x^2 + \text{Ker}(T) = \{\frac{1}{2}x^2 + c \mid c \in \mathbb{R}\}.$$

3. (15 Punkte)

a) Sei \mathbb{K} ein Körper. Seien $A \in M_{m \times n}(\mathbb{K})$ und seien $G \in Gl_m(\mathbb{K})$ und $F \in Gl_n(\mathbb{K})$. Zeigen Sie $Ker(L_{AF}) = F^{-1}Ker(L_A)$ und $Im(L_{GA}) = GIm(L_A)$.

Im Folgenden sei \mathbb{K} ein endlicher Körper. Für $a,b,c\in\mathbb{K}$ definieren wir die Gerade

$$\mathcal{G}_{a,b,c} = \{(x_1, x_2) \in \mathbb{K}^2 \mid ax_1 + bx_2 = c\}.$$

b) Seien $(a_1, b_1, c_1), (a_2, b_2, c_2) \in \mathbb{K}^3$. Bestimmen Sie die Kardinalität von

$$\mathcal{G}_{a_1,b_1,c_1} \cap \mathcal{G}_{a_2,b_2,c_2}$$
.

Lösung

a) Es ist

$$v \in \operatorname{Ker}(L_{AF}) \Leftrightarrow L_{AF}v = 0 \Leftrightarrow L_{A}(L_{F}v) = 0 \Leftrightarrow L_{F}v \in \operatorname{Ker}(L_{A})$$
$$\Leftrightarrow v \in L_{F}^{-1}\operatorname{Ker}(L_{A}) = F^{-1}\operatorname{Ker}(L_{A}),$$
$$w \in \operatorname{Im}(L_{GA}) \Leftrightarrow \exists v \in \mathbb{K}^{n} : w = L_{GA}(v) \Leftrightarrow \exists v \in \mathbb{K}^{n} : w = L_{G}(L_{A}v) = G(L_{A}v)$$
$$\Leftrightarrow \exists v \in \mathbb{K}^{n} : G^{-1}w = L_{A}v \Leftrightarrow G^{-1}w \in \operatorname{Im}(L_{A})$$
$$\Leftrightarrow w \in G\operatorname{Im}(L_{A}).$$

b) Es ist

$$\mathcal{G}_{a_1,b_1,c_1} \cap \mathcal{G}_{a_2,b_2,c_2} = \{(x_1,x_2) \in \mathbb{K}^2 \mid a_i x_1 + b_i x_2 = c_i \quad (i=1,2)\}$$

und somit ist $\mathcal{G}_{a_1,b_1,c_1}\cap\mathcal{G}_{a_2,b_2,c_2}$ die Lösungsmenge des Gleichungssystems Ax=z, wobei

$$A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \quad \text{und} \quad z = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Wir machen eine Fallunterscheidung:

" $\det(A) \neq 0$ ": Falls A invertierbar (bzw. vollen Rang besitzt) ist, dann existiert genau eine Lösung $x = A^{-1}z$ und somit ist

$$|\mathcal{G}_{a_1,b_1,c_1} \cap \mathcal{G}_{a_2,b_2,c_2}| = |\{A^{-1}z\}| = 1.$$

" $\det(A) = 0$ ": Falls A nicht invertierbar ist, existieren zwei Möglichkeiten:

- Wenn $\operatorname{Rang}(A)=0$ ist, dann ist A die Nullmatrix und es existieren die folgenden Möglichkeiten:
 - Falls z=0 ist, dann gilt Ax=z für alle $x\in\mathbb{K}^2$ und somit ist

$$|\mathcal{G}_{a_1,b_1,c_1} \cap \mathcal{G}_{a_2,b_2,c_2}| = |\mathbb{K}^2| = |\mathbb{K}|^2.$$

- Falls $z \neq 0$ ist, dann ist $Ax \neq z$ für alle $x \in \mathbb{K}^2$ und somit ist

$$|\mathcal{G}_{a_1,b_1,c_1} \cap \mathcal{G}_{a_2,b_2,c_2}| = |\emptyset| = 0.$$

- Falls Rang(A) = 1, dann existieren zwei Optionen:
 - Falls $z \notin \text{Im}(L_A)$, dann existiert keine Lösung und folglich ist

$$|\mathcal{G}_{a_1,b_1,c_1} \cap \mathcal{G}_{a_2,b_2,c_2}| = |\emptyset| = 0.$$

- Falls $z \in \operatorname{Im}(L_A)$, dann ist die Menge der Lösungen von der Form $x_0 + \operatorname{Ker}(L_A)$, wobei x_0 eine beliebige Lösung von Ax = z ist, und eine solche existiert. Da $\operatorname{Rang}(A) = 1$ ist, ist $\dim \operatorname{Ker}(L_A) = \dim \mathbb{K}^2 - \operatorname{Rang}(A) = 1$ und somit ist $\operatorname{Ker}(L_A) \cong \mathbb{K}$. Es folgt

$$|\mathcal{G}_{a_1,b_1,c_1} \cap \mathcal{G}_{a_2,b_2,c_2}| = |x_0 + \operatorname{Ker}(L_A)| = |\operatorname{Ker}(L_A)| = |\mathbb{K}|,$$

wobei wir in der zweitletzten Gleichung verwendet haben, dass die Abbildung $v\mapsto x_0+v$ eine Bijektion ist, da invertierbar mit Inversen $v\mapsto -x_0+v$.

- **4.** (15 Punkte) Sei V ein Vektorraum über einem Körper \mathbb{K} und seien $W_1, W_2 \subset V$ Unterräume von V.
 - a) Sei dim $W_i = m_i, i = 1, 2$ mit $m_1 \le m_2$. Beweisen Sie, dass dim $(W_1 \cap W_2) \le m_1$ und dim $(W_1 + W_2) \le m_1 + m_2$.
 - b) Geben Sie an welche Eigenschaften V, W_1 und W_2 erfüllen müssen, damit V die direkte Summe von W_1 und W_2 ist.
 - c) Beweisen Sie die folgende Aussage: $V = W_1 \oplus W_2$ genau dann, wenn für alle $v \in V$ eindeutige $w_1 \in W_1$ und $w_2 \in W_2$ existieren, sodass $v = w_1 + w_2$ gilt.
 - d) Sei $W_1 = \{A \in M_{n \times n}(\mathbb{K}) \mid A_{ij} = 0 \text{ falls } i \leq j\}$ und sei W_2 die Menge der symmetrischen $n \times n$ -Matrizen. Sowohl W_1 wie auch W_2 sind Unterräume von $M_{n \times n}(\mathbb{K})$. Beweisen Sie, dass

$$M_{n\times n}(\mathbb{K})=W_1\oplus W_2.$$

Lösung

a) Es gilt

$$W_1 \cap W_2 \subset W_1 \Rightarrow \dim(W_1 \cap W_2) \leq \dim W_1 = m_1,$$

wie in der Vorlesung bewiesen.

Es gilt aufgrund der Dimensionsformel

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) \le \dim(W_1) + \dim(W_2) = m_1 + m_2.$$

- b) Seien $W_1, W_2 \subset V$ zwei Unterräume. V ist die direkte Summe von W_1 und W_2 , wenn gelten $V = W_1 + W_2$ und $W_1 \cap W_2 = \{0\}$.
- c) Angenommen $V = W_1 \oplus W_2$, sei $v \in V$. Nach Voraussetzung ist $v = w_1 + w_2$ für zwei Vektoren $w_i \in W_i$. Seien $\tilde{w}_i \in W_i$, sodass $v = \tilde{w}_1 + \tilde{w}_2$, dann gilt also

$$w_1 - \tilde{w}_1 = \tilde{w}_2 - w_2$$

und da w_i , $\tilde{w}_i \in W_i$ sind, folgt $w_i - \tilde{w}_i \in W_i$ und also ist $w_1 - \tilde{w}_1 \in W_1$ und $w_1 - \tilde{w}_1 = \tilde{w}_2 - w_2 \in W_2$, sprich $w_1 - \tilde{w}_1 \in W_1 \cap W_2 = \{0\}$. Aus der Eindeutigkeit der additiven Inversen folgt $w_1 = \tilde{w}_1$ und folglich

$$v = w_1 + w_2 = \tilde{w}_1 + \tilde{w}_2 = w_1 + \tilde{w}_2 \Rightarrow w_2 = \tilde{w}_2$$

aufgrund der Kürzungsregeln in Gruppen. Dies zeigt, dass die Darstellung $v=w_1+w_2$ eindeutig ist.

Seien nun W_1,W_2 Unterräume von V, sodass jeder Vektor $v\in V$ sich eindeutig als Summe $v=w_1+w_2$ mit $w_i\in W_i$ schreiben lässt. Dann gilt insbesondere $V=W_1+W_2$. Wir müssen also nur folgern, dass $W_1\cap W_2=\{0\}$ ist. Sei nun $v\in W_1\cap W_2$. Dann sind $v=w_1+0$ mit $v=w_1\in W_1$ und $v=0+w_2$ mit $v=w_2\in W_2$ zwei Zerlegungen. Da jede solche Zerlegung eindeutig durch v bestimmt ist, gilt also $w_2=0$ (bzw. $w_1=0$) und somit v=0. Das zeigt $W_1\cap W_2=\{0\}$.

d) Sei $A \in W_1 \cap W_2$. Es gilt $A_{ij} = 0$ für alle $1 \le i \le j \le n$, da $A \in W_1$. Sei j < i, dann gilt wegen $A \in W_2$, dass $A_{ij} = A_{ji}$ und da $A_{ji} = 0$ ist, folgt $A_{ij} = 0$. Dies zeigt, dass A = 0 ist und somit gilt $W_1 \cap W_2 = \{0\}$.

Wir müssen also nur noch zeigen, dass $M_{n\times n}(\mathbb{K})=W_1+W_2$ ist. Sei $A\in M_{n\times n}(\mathbb{K})$. Wir definieren Matrizen $U,S\in M_{n\times n}(\mathbb{K})$ durch

$$U_{ij} = \begin{cases} 0 & \text{falls } 1 \le i \le j \le n \\ A_{ij} - A_{ji} & \text{sonst} \end{cases} \quad \text{und} \quad S_{ij} = \begin{cases} A_{ij} & \text{falls } 1 \le i \le j \le n \\ A_{ji} & \text{sonst} \end{cases}$$

und wir erhalten A = U + S, wobei $U \in W_1, S \in W_2$ nach Konstruktion.

- **5.** (15 Punkte) Sei V ein endlichdimensionaler Vektorraum über einem Körper \mathbb{K} und sei W ein Unterraum von V.
 - a) Sei $W^{\perp} = \{ f \in V^* \mid W \subset \operatorname{Ker}(f) \}$. Zeigen Sie, dass $W^{\perp} \subset V^*$ ein Unterraum ist.
 - b) Definieren Sie die Abbildung

$$\Phi: W^{\perp} \to (V/W)^*, \Phi(f)(v+W) = f(v) \quad (v \in V).$$

Zeigen Sie, dass Φ wohldefiniert ist.

- c) Zeigen Sie, dass Φ linear ist.
- d) Zeigen Sie, dass Φ invertierbar ist und dass somit gilt

$$(V/W)^* \cong W^{\perp}$$
.

e) Sei $p:V\to V/W$ die kanonische Projektion. Zeigen Sie, dass p^* unter der Identifikation $(V/W)^*\cong W^\perp$ mit der Einbettung $i:W^\perp\hookrightarrow V^*$ übereinstimmt.

Lösung

a) Es ist $0 \in W^{\perp}$ und somit $W^{\perp} \neq \emptyset$. Seien $f_1, f_2 \in W^{\perp}$ und $\alpha \in \mathbb{K}$. Für $w \in W$ gilt

$$(f_1 + \alpha f_2)(w) = f_1(w) + \alpha f_2(w) = 0$$

und somit $f_1+\alpha f_2\in W^\perp$. Da $f_1,f_2\in W^\perp$ und $\alpha\in\mathbb{K}$ beliebig waren, ist W^\perp also ein Unterraum von V^* .

b) Angenommen v+W=v'+W und $f\in W^\perp$, dann ist v'-v=w für ein $w\in W$ und folglich

$$f(v') = f(v + w) = f(v) + f(w) = f(v)$$

und somit ist $\Phi(f)(v+W)$ nicht abhängig von der Wahl des Repräsentanten von v+W. Insbesondere ist $\Phi(f)$ wohldefiniert.

c) Seien $f_1, f_2 \in W^{\perp}$ und $\alpha \in \mathbb{K}$ und $v \in V$, dann ist

$$\Phi(f_1 + \alpha f_2)(v + W) = (f_1 + \alpha f_2)(v) = f_1(v) + \alpha f_2(v) = \Phi(f_1)(v + W) + \alpha \Phi(f_2)(v + W).$$

Da v beliebig war, gilt also $\Phi(f_1+\alpha f_2)=\Phi(f_1)+\alpha\Phi(f_2)$ und folglich ist Φ linear.

d) Sei $f \in \text{Ker}(\Phi)$, dann ist $\Phi(f)(v+W) = f(v) = 0$ für alle $v \in V$, und folglich ist f = 0. Insbesondere ist Φ also injektiv.

Sei $g \in (V/W)^*$ und sei $p: V \to V/W$ die kanonische Projektion. Wir definieren $f \in V^*$ durch $f(v) = (g \circ p)(v)$. Da p und f linear sind, ist auch f linear und somit wohldefiniert. Für $w \in W$ gilt f(w) = g(p(w)) = g(W) = 0, da W das neutrale Element in V/W ist. Also ist $f \in W^\perp$. Wir berechnen

$$\Phi(f)(v + W) = f(v) = g(p(v)) = g(v + W)$$

und folglich ist $\Phi(f) = g$. Da g beliebig war, ist Φ surjektiv und also ein Isomorphismus.

e) Wir wissen aus der Vorlesung, dass $p^*(f) = f \circ p$ für alle $f \in (V/W)^*$ ist. Unter der Identifikation $\Phi: W^{\perp} \xrightarrow{\sim} (V/W)^*$ erhalten wir für beliebige $f \in W^{\perp}$ und $v \in V$:

$$p^*(\Phi f)(v) = \Phi(f)(p(v)) = \Phi(f)(v + W) = f(v)$$

und somit ist $p^*(\Phi f) = f$, wie gewünscht.

- **6.** (15 Punkte) Seien V, W endlichdimensionale Vektorräume über einem Körper \mathbb{K} .
 - a) Seien $S, T \in \text{Hom}(V, W)$ von Null verschieden und sei $\text{Rang}(S) \neq \text{Rang}(T)$. Zeigen Sie, dass die Menge $\{S, T\}$ linear unabhängig ist.
 - b) Seien $S, T \in \text{Hom}(V, W)$ von Null verschieden und sei $\text{nullity}(S) \neq \text{nullity}(T)$. Zeigen Sie, dass die Menge $\{S, T\}$ linear unabhängig ist.
 - c) Geben Sie die Definition einer Projektion $P \in \operatorname{End}(V)$. Ist die Komposition zweier Projektionen wieder eine Projektion?
 - d) Seien $V_1, V_2 \subset V$, $W_1, W_2 \subset W$ Unterräume, sodass $V = V_1 \oplus V_2$ sowie $W = W_1 \oplus W_2$ gilt. Seien $P \in \text{End}(V)$ und $Q \in \text{End}(W)$ die Projektionen auf V_1 bzw. W_1 mit $\text{Ker}(P) = V_2$ und $\text{Ker}(Q) = W_2$.

Zeigen Sie, dass die Abbildungen $\Phi, \Psi: \operatorname{Hom}(V,W) \to \operatorname{Hom}(V,W)$ gegeben durch $\Phi(T) = TP$ und $\Psi(T) = QT$ Projektionen sind. Bestimmen Sie jeweils den Kern dieser Abbildungen.

Lösung

a) Sei $\mathrm{Rang}(S) < \mathrm{Rang}(T)$. Dann existiert ein $w \in \mathrm{Im}(T)$ mit $w \notin \mathrm{Im}(S)$. Sei $v \in V$, sodass w = Tv. Angenommen $\alpha S + \beta T = 0$, dann ist insbesondere $0 = \alpha Sv + \beta Tv = S(\alpha v) + \beta w$. Insbesondere ist also $-\beta w \in \mathrm{Im}(S)$ und folglich ist $\beta = 0$, da ansonsten $-\beta \in \mathbb{K}^*$ invertierbar ist und $w \in (-\beta)^{-1}\mathrm{Im}(S) = \mathrm{Im}(S)$ folgt, im Widerspruch zur Voraussetzung. Also ist $0 = \alpha S$. Da $S \neq 0$, ist also $\alpha = 0$. Insbesondere ist also $\{S, T\}$ linear unabhängig.

Der Fall Rang(S) > Rang(T) folgt analog nach Umbenennung der Abbildungen.

b) Sei $\operatorname{nullity}(S) < \operatorname{nullity}(T)$, dann folgt

$$Rang(S) = dim(V) - nullity(S) > dim(V) - nullity(T) = Rang(T)$$

und folglich gilt $\mathrm{Rang}(S) \neq \mathrm{Rang}(T)$. Die Behauptung folgt also aus der vorangehenden Teilaufgabe.

Der Fall $\operatorname{nullity}(S) > \operatorname{nullity}(T)$ folgt analog nach Umbenennung der Abbildungen.

c) Eine Abbildung $P \in \operatorname{End}(V)$ heisst Projektion, falls gilt $P^2 = P$. Im Allgemeinen ist die Komposition zweier Projektionen keine Projektion. Als Beispiel nehmen wir die Komposition der Projektionen $P_1, P_2 : \mathbb{R}^2 \to \mathbb{R}^2$ gegeben wie oben durch die Zerlegungen

$$\mathbb{R}^2 = \mathbb{R}e_1 \oplus \mathbb{R}e_2 = \mathbb{R}(e_1 + e_2) \oplus \mathbb{R}(e_1 - e_2),$$

 $\operatorname{Ker}(P_1)=\mathbb{R}e_1, \operatorname{Im}(P_1)=\mathbb{R}e_2, \operatorname{Ker}(P_2)=\mathbb{R}(e_1-e_2), \operatorname{Im}(P_2)=\mathbb{R}(e_1+e_2).$ Man beachte, dass

$$e_1 = \frac{1}{\sqrt{2}}(e_1 + e_2) + \frac{1}{\sqrt{2}}(e_1 - e_2)$$

eine Zerlegung von e_1 in Summanden aus $\mathbb{R}(e_1 + e_2)$ und $\mathbb{R}(e_1 - e_2)$ ist. Folglich ist

$$P_1P_2(e_1) = P_1\left(\frac{1}{\sqrt{2}}(e_1 + e_2)\right) = \frac{1}{\sqrt{2}}e_1$$

und insbesondere

$$(P_1P_2)^2(e_1) = \frac{1}{\sqrt{2}}P_1P_2(e_1) = \frac{1}{2}e_1 \neq \frac{1}{\sqrt{2}}e_1$$

und somit ist $(P_1P_2)^2 \neq P_1P_2$, also P_1P_2 keine Projektion.

d) Es gilt $\Phi^2(T)=\Phi(\Phi(T))=\Phi(TP)=TP^2=TP=\Phi(T)$ und $\Psi^2(T)=\Psi(\Psi(T))=\Psi(QT)=Q^2T=QT=\Psi(T)$, da $P^2=P$ und $Q^2=Q$.

Wir wissen aus den Übungen, dass $V = \operatorname{Ker}(P) \oplus \operatorname{Im}(P)$ und $W = \operatorname{Ker}(Q) \oplus \operatorname{Im}(Q)$ ist, wobei nach Voraussetzung $\operatorname{Im}(P) = V_1$, $\operatorname{Ker}(P) = V_2$, $\operatorname{Im}(Q) = W_1$ und $\operatorname{Ker}(Q) = W_2$ ist. Es gilt:

$$T \in \operatorname{Ker}(\Phi) \Leftrightarrow \forall v \in V : \Phi(T)(v) = T(Pv) = 0$$

$$\Leftrightarrow \forall v \in V : Pv \in \operatorname{Ker}(T)$$

$$\Leftrightarrow \operatorname{Im}(P) \subset \operatorname{Ker}(T)$$

$$\Leftrightarrow V_1 \subset \operatorname{Ker}(T),$$

$$T \in \operatorname{Ker}(\Psi) \Leftrightarrow \forall v \in V : \Psi(T)(v) = Q(Tv) = 0$$

$$\Leftrightarrow \forall v \in V : Tv \in \operatorname{Ker}(Q)$$

$$\Leftrightarrow \operatorname{Im}(T) \subset \operatorname{Ker}(Q)$$

$$\Leftrightarrow \operatorname{Im}(T) \subset W_2.$$

Es gilt also

$$\operatorname{Ker}(\Phi) = \{ T \in \operatorname{Hom}(V, W) \mid V_1 \subset \operatorname{Ker}(T) \}, \\ \operatorname{Ker}(\Psi) = \{ T \in \operatorname{Hom}(V, W) \mid \operatorname{Im}(T) \subset W_2 \}.$$