SINGULAR VALUE DECOMPOSITION

MEIKE AKVELD AND MANUEL W. LUETHI

Abstract

We try to motivate the proof of the singular value decompostion for a linear map between two finite dimensional \mathbb{R} vector spaces and argue that the proof follows with elementary trickery from the right formulation of the question.

We first motivate the statement. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Let $r=\operatorname{rank} T$, i.e. r is the dimension of the image of T. Let $\left(w_{1}, \ldots, w_{r}\right)$ be any basis of $\operatorname{im} T$. By definition there are $v_{1}, \ldots, v_{r} \in \mathbb{R}$ such that $T v_{i}=w_{i}$ and thus $\left(v_{1}, \ldots, v_{r}\right)$ is a linearly independent set. One easily checks that $\operatorname{ker} T \cap\left\langle v_{1}, \ldots, v_{r}\right\rangle=\{0\}$, and hence we can find an extension $\left(v_{1}, \ldots, v_{n}\right)$ to a basis of \mathbb{R}^{n} such that the matrix representing T with respect to this basis and any extension of the w_{i} to a basis of \mathbb{R}^{m} is of the form

$$
\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

where I_{r} denotes the $r \times r$ identity matrix. If we normalize the v_{i} with respect to the Euclidean metric on \mathbb{R}^{n}, then we would have to replace the identity matrix in the top left corner by a diagonal matrix, whose diagonal entries are the original length of the vectors v_{i}.

The singular value decomposition is nothing but a refined version of this statement. Its proof is a bit more intricate, as we can certainly start with an orthonormal basis of $\operatorname{im} T$ and we can of course extend it to an orthonormal basis of \mathbb{R}^{m}, but there is no reason why the v_{i} should be orthogonal. However the singular value decomposition states that there exists an orthonormal basis of \mathbb{R}^{m} such that the corresponding v_{i} can be chosen orthonormally.

There are two main ingredients:

- We want to somehow single out a designated basis of im T for which the v_{i} could be orthogonal, but ex ante it is not clear, where this would come from. Let T^{*} denote the adjoint to T. Then $T T^{*}$ is self-adjoint non-negative definite and hence \mathbb{R}^{m} has an orthonormal basis consisting of eigenvectors of $T T^{*}$. As $\operatorname{im} T T^{*}=\operatorname{im} T$, there is a very special basis of $\operatorname{im} T$, namely the eigenvectors of $T T^{*}$ for positive eigenvalues.
- The map T descends to a bijection between $(\operatorname{ker} T)^{\perp}$ and $\operatorname{im} T$, hence given any $w \in \operatorname{im} T$, there is a unique $v \in(\operatorname{ker} T)^{\perp}$ such that $T v=w$. Note that $T^{*} \mathbb{R}^{m} \subseteq(\operatorname{ker} T)^{\perp}$, and as the restriction of $T T^{*}$ is diagonalizable, so is its inverse. Hence one expects that for the unique $v_{i} \in(\operatorname{ker} T)^{\perp}$ satisfying $T v_{i}=w_{i}$ for some eigenvector $w_{i} \in \operatorname{im} T$ of $T T^{*}$, one also has that $T^{*} w_{i}$ is a multiple of v_{i}. It will however turn out that in the proof it is much easier to define the v_{i} using T^{*} directly.
We now set out to give a rigorous proof of the following
Theorem 0.1 (Singular Value Decomposition). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear and $r=\operatorname{rank} T \geq 1$. Then there exist $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$ and orthonormal bases $\left(v_{i}\right)_{i=1}^{n}$

Date: April 19, 2018.
and $\left(w_{j}\right)_{j=1}^{m}$ of \mathbb{R}^{n} and \mathbb{R}^{m} respectively, so that $T v_{i}=\sigma_{i} w_{i}$ whenever $1 \leq i \leq r$ and $v_{i} \in \operatorname{ker} T$ otherwise.

Proof. As $T T^{*}$ is non-negative definite self-adjoint, there exists an orthonormal basis $\left(w_{j}\right)_{j=1}^{m}$ of \mathbb{R}^{m} consisting of eigenvectors of $T T^{*}$. For all $1 \leq j \leq m$ let $\lambda_{j} \in \mathbb{R}$ such that $T T^{*} w_{j}=\lambda_{j} w_{j}$. After permutation of the elements of the basis, we can assume without loss of generality that $\lambda_{1} \geq \cdots \geq \lambda_{\rho}>0=\lambda_{\rho+1}=\cdots=\lambda_{m}$, where $\rho=\operatorname{rank} T T^{*}$. In particular, $\left(w_{j}\right)_{j=1}^{\rho}$ is an orthonormal basis of im $T T^{*}$.

We show now that $\operatorname{im} T T^{*}=\operatorname{im} T$. The inclusion $\operatorname{im} T T^{*} \subseteq \operatorname{im} T$ is immediate, and using the assumption of finite dimensionality, ist suffices to show that $\operatorname{rank} T T^{*}=\operatorname{rank} T$. First we show that $\operatorname{ker} T T^{*}=\operatorname{ker} T^{*}$. Again, one inclusion is clear, as $T^{*} w=0 \Longrightarrow T T^{*} w=0$. For the opposite inclusion, assume that $w \in \operatorname{ker} T T^{*}$. Then

$$
0=\left\langle T T^{*} w, w\right\rangle=\left\langle T^{*} w, T^{*} w\right\rangle \Longrightarrow T^{*} w=0
$$

and hence follows $\operatorname{ker} T T^{*} \subseteq \operatorname{ker} T^{*}$. Hence the dimension formula implies that

$$
\begin{aligned}
\operatorname{rank} T T^{*} & =m-\operatorname{dim}\left(\operatorname{ker} T T^{*}\right)=m-\operatorname{dim}\left(\operatorname{ker} T^{*}\right) \\
& =\operatorname{rank} T^{*}=\operatorname{rank} T
\end{aligned}
$$

as desired. It follows, that $\rho=r$ and that $\left(w_{j}\right)_{j=1}^{r}$ is an orthonormal basis of im T. For $1 \leq i \leq r$ set $\tilde{v}_{i}=T^{*} w_{i}$, then for all $1 \leq i, j \leq r$ holds

$$
\lambda_{i} \delta_{i j}=\left\langle T T^{*} w_{i}, w_{j}\right\rangle=\left\langle\tilde{v}_{i}, \tilde{v}_{j}\right\rangle
$$

and thus $\left(\tilde{v}_{j}\right)_{j=1}^{r}$ form an orthogonal family of non-zero vectors. In particular, they are linearly independent. Let $v \in \operatorname{ker} T$, then we get for $1 \leq i \leq r$

$$
0=\left\langle T v, w_{i}\right\rangle=\left\langle v, \tilde{v}_{i}\right\rangle
$$

and thus $(\operatorname{ker} T) \perp\left\langle\tilde{v}_{1}, \ldots, \tilde{v}_{r}\right\rangle$, so that using $n=\operatorname{dim}(\operatorname{ker} T)+r$ there exists an extension $\left(\tilde{v}_{i}\right)_{i=1}^{n}$ to an orthogonal basis of \mathbb{R}^{n}. Let $v_{i}=\frac{1}{\left\|\tilde{v}_{i}\right\|} \tilde{v}_{i}$ for all $1 \leq i \leq n$, then it follows that

$$
T\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T v_{i}=\sum_{i=1}^{r} \alpha_{i} \sqrt{\lambda_{i}} w_{i}
$$

and setting $\sigma_{i}=\sqrt{\lambda_{i}}$ the desired statement follows.
Email address: manuel.luethi@math.ethz.ch

