SINGULAR VALUE DECOMPOSITION

MEIKE AKVELD AND MANUEL W. LUETHI

ABSTRACT. We try to motivate the proof of the singular value decomposition for a linear map between two finite dimensional $\mathbb R$ vector spaces and argue that the proof follows with elementary trickery from the right formulation of the question.

We first motivate the statement. Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Let $r = \operatorname{rank} T$, i.e. r is the dimension of the image of T. Let (w_1, \ldots, w_r) be any basis of $\operatorname{im} T$. By definition there are $v_1, \ldots, v_r \in \mathbb{R}$ such that $Tv_i = w_i$ and thus (v_1, \ldots, v_r) is a linearly independent set. One easily checks that $\ker T \cap \langle v_1, \ldots, v_r \rangle = \{0\}$, and hence we can find an extension (v_1, \ldots, v_n) to a basis of \mathbb{R}^n such that the matrix representing T with respect to this basis and any extension of the w_i to a basis of \mathbb{R}^m is of the form

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

where I_r denotes the $r \times r$ identity matrix. If we normalize the v_i with respect to the Euclidean metric on \mathbb{R}^n , then we would have to replace the identity matrix in the top left corner by a diagonal matrix, whose diagonal entries are the original length of the vectors v_i .

The singular value decomposition is nothing but a refined version of this statement. Its proof is a bit more intricate, as we can certainly start with an orthonormal basis of \mathbb{R}^m , but there is no reason why the v_i should be orthogonal. However the singular value decomposition states that there exists an orthonormal basis of \mathbb{R}^m such that the corresponding v_i can be chosen orthonormally.

There are two main ingredients:

- We want to somehow single out a designated basis of im T for which the v_i could be orthogonal, but ex ante it is not clear, where this would come from. Let T^* denote the adjoint to T. Then TT^* is self-adjoint non-negative definite and hence \mathbb{R}^m has an orthonormal basis consisting of eigenvectors of TT^* . As im $TT^* = \operatorname{im} T$, there is a very special basis of im T, namely the eigenvectors of TT^* for positive eigenvalues.
- The map T descends to a bijection between $(\ker T)^{\perp}$ and $\operatorname{im} T$, hence given any $w \in \operatorname{im} T$, there is a unique $v \in (\ker T)^{\perp}$ such that Tv = w. Note that $T^*\mathbb{R}^m \subseteq (\ker T)^{\perp}$, and as the restriction of TT^* is diagonalizable, so is its inverse. Hence one expects that for the unique $v_i \in (\ker T)^{\perp}$ satisfying $Tv_i = w_i$ for some eigenvector $w_i \in \operatorname{im} T$ of TT^* , one also has that T^*w_i is a multiple of v_i . It will however turn out that in the proof it is much easier to define the v_i using T^* directly.

We now set out to give a rigorous proof of the following

Theorem 0.1 (Singular Value Decomposition). Let $T : \mathbb{R}^n \to \mathbb{R}^m$ linear and $r = \operatorname{rank} T \geq 1$. Then there exist $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and orthonormal bases $(v_i)_{i=1}^n$

Date: April 19, 2018.

and $(w_j)_{j=1}^m$ of \mathbb{R}^n and \mathbb{R}^m respectively, so that $Tv_i = \sigma_i w_i$ whenever $1 \leq i \leq r$ and $v_i \in \ker T$ otherwise.

Proof. As TT^* is non-negative definite self-adjoint, there exists an orthonormal basis $(w_j)_{j=1}^m$ of \mathbb{R}^m consisting of eigenvectors of TT^* . For all $1 \leq j \leq m$ let $\lambda_j \in \mathbb{R}$ such that $TT^*w_j = \lambda_j w_j$. After permutation of the elements of the basis, we can assume without loss of generality that $\lambda_1 \geq \cdots \geq \lambda_\rho > 0 = \lambda_{\rho+1} = \cdots = \lambda_m$, where $\rho = \operatorname{rank} TT^*$. In particular, $(w_j)_{j=1}^\rho$ is an orthonormal basis of im TT^* . We show now that im $TT^* = \operatorname{im} T$. The inclusion im $TT^* \subseteq \operatorname{im} T$ is immediately

We show now that $\operatorname{im} TT^* = \operatorname{im} T$. The inclusion $\operatorname{im} TT^* \subseteq \operatorname{im} T$ is immediate, and using the assumption of finite dimensionality, ist suffices to show that $\operatorname{rank} TT^* = \operatorname{rank} T$. First we show that $\operatorname{ker} TT^* = \operatorname{ker} T^*$. Again, one inclusion is clear, as $T^*w = 0 \implies TT^*w = 0$. For the opposite inclusion, assume that $w \in \operatorname{ker} TT^*$. Then

$$0 = \langle TT^*w, w \rangle = \langle T^*w, T^*w \rangle \implies T^*w = 0$$

and hence follows $\ker TT^*\subseteq \ker T^*$. Hence the dimension formula implies that

$$\operatorname{rank} TT^* = m - \dim(\ker TT^*) = m - \dim(\ker T^*)$$
$$= \operatorname{rank} T^* = \operatorname{rank} T$$

as desired. It follows, that $\rho = r$ and that $(w_j)_{j=1}^r$ is an orthonormal basis of im T. For $1 \le i \le r$ set $\tilde{v}_i = T^*w_i$, then for all $1 \le i, j \le r$ holds

$$\lambda_i \delta_{ij} = \langle TT^* w_i, w_j \rangle = \langle \tilde{v}_i, \tilde{v}_j \rangle$$

and thus $(\tilde{v}_j)_{j=1}^r$ form an orthogonal family of non-zero vectors. In particular, they are linearly independent. Let $v \in \ker T$, then we get for $1 \le i \le r$

$$0 = \langle Tv, w_i \rangle = \langle v, \tilde{v}_i \rangle$$

and thus $(\ker T) \perp \langle \tilde{v}_1, \dots, \tilde{v}_r \rangle$, so that using $n = \dim(\ker T) + r$ there exists an extension $(\tilde{v}_i)_{i=1}^n$ to an orthogonal basis of \mathbb{R}^n . Let $v_i = \frac{1}{\|\tilde{v}_i\|} \tilde{v}_i$ for all $1 \leq i \leq n$, then it follows that

$$T\left(\sum_{i=1}^{n} \alpha_i v_i\right) = \sum_{i=1}^{n} \alpha_i T v_i = \sum_{i=1}^{r} \alpha_i \sqrt{\lambda_i} w_i$$

and setting $\sigma_i = \sqrt{\lambda_i}$ the desired statement follows.

Email address: manuel.luethi@math.ethz.ch