Algebra II

Assignment 15

DEFINITION OF GALOIS GROUP

- 1. Let E/k be a field extension. Show that every $\sigma \in \text{Gal}(E/k)$ is an invertible k-linear map of the k-vector space E.
- 2. Show that $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) = {\operatorname{id}, \sigma}$, where σ is the complex conjugation.
- 3. Determine all irreducible polynomials of degree 1, 2, 3, 4, 5 in $\mathbb{F}_2[X]$.
- 4. Show that $X^4 + 1 \in \mathbb{Q}[X]$ is irreducible. Show that $X^4 + 1$ is reducible in $\mathbb{F}_p[X]$ for every prime p.