Assignment 18

Radical extensions, Transitive group actions

1. Let $f=X^{3}+p X+q \in \mathbb{Q}[X]$ be an irreducible polynomial. Let $R(f)=\left\{z_{1}, z_{2}, z_{3}\right\}$ and $E=\operatorname{Sf}(f)$.
(a) Define the discriminant of f as

$$
D(f):=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2}
$$

Prove that $D(f)=-4 p^{3}-27 q^{2} \neq 0$. [Hint: $f=\left(X-z_{1}\right)\left(X-z_{2}\right)\left(X-z_{3}\right)$]
(b) Notice that E contains the square roots of $D(f)$.
(c) Suppose that $D(f)$ is not a square in \mathbb{Q}. Show that $\operatorname{Gal}(E / \mathbb{Q})=S_{3}$.
(d) Suppose that $D(f)$ is a square in \mathbb{Q}. Show that there exists no automorphism $\sigma \in \operatorname{Gal}(E / \mathbb{Q})$ switching z_{1} and z_{2} and deduce that $\operatorname{Gal}(E / \mathbb{Q})=A_{3}$.
(e) Prove that the roots of f are all real if and only if $D(f)>0$. Else, f has one real root and two non-real conjugated roots.
2. Let $f=X^{3}+X^{2}+2 X+\frac{7}{27} \in \mathbb{Q}[X]$. Construct a radical extension of \mathbb{Q} containing the splitting field of f. [Hint: Look at Cardano's formula from the first lecture]
3. Let k be a field of characteristic 2 and K / k a quadratic extension such that $\operatorname{Card}(\operatorname{Gal}(K / k))=2$. Show that there exist $\beta \in K$ and $a \in k$ such that β is a root of $X^{2}-X+a \in k[X]$ and $K=k(\beta)$.
4. Let G be a group acting on a set X with at least two elements. We say that the action is doubly transitive if for each $x_{1}, x_{2}, y_{1}, y_{2} \in X$ with $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$ there exists $g \in G$ such that $g \cdot x_{i}=y_{i}$ for $i=1,2$. Show that the following statements hold:
(a) S_{n} acts doubly transitively on $\{1, \ldots, n\}$ for each $n \geqslant 2$.
(b) A_{n} acts doubly transitively on $\{1, \ldots, n\}$ for each $n \geqslant 4$.
(c) For each $n \geqslant 4$ the group D_{n} does not act doubly transitively on the vertices of an n-gon (see Assignment 8, Exercise 7).

