Assignment 21

Solvability by Radicals

1. Let be (N, \cdot) and (H, \cdot) be two groups and $\varphi: H \longrightarrow \operatorname{Aut}(N)$ a group homomorphism. Write $\varphi_{h}:=\varphi(h) \in \operatorname{Aut}(N)$ for each $h \in H$. Define $G:=N \rtimes_{\varphi} H$, the (external) semidirect product of N and H, as the set $N \times H$ with the binary operation

$$
\forall n, n^{\prime} \in N, \forall h, h^{\prime} \in H,(n, h) \cdot \varphi\left(n^{\prime}, h^{\prime}\right)=\left(n \cdot \varphi_{h}\left(n^{\prime}\right), h \cdot h^{\prime}\right)
$$

(a) Check that $\left(N \rtimes_{\varphi} H, \cdot{ }_{\varphi}\right)$ is a group.
(b) Prove: there is a short exact sequence $1 \longrightarrow N \xrightarrow{j} N \rtimes_{\varphi} H \xrightarrow{\pi} H \longrightarrow 1$.
(c) Deduce that $G=N \rtimes_{\varphi} H$ contains two subgroups N_{0}, H_{0} with $N_{0} \unlhd G$, such that $N \cong N_{0}$ and $H \cong H_{0}$, satisfying the properties

$$
\left\{\begin{array}{l}
N_{0} H_{0}=G \\
N_{0} \cap H_{0}=\{1\} .
\end{array}\right.
$$

Conversely, let G be a group, $H \leqslant G$ a subgroup and $N \unlhd G$ a normal subgroup. We say that G is the (inner) semidirect product of N and H, if

$$
\left\{\begin{array}{l}
N H=G \\
N \cap H=\{1\} .
\end{array}\right.
$$

In this case, we write $G=N \rtimes H$. Assume that this is the case.
(d) Prove: there is a unique homomorphism $\alpha: G \longrightarrow H$ such that $\left.\alpha\right|_{H}=\operatorname{id}_{H}$ and $\operatorname{ker}(\alpha)=N$.
(e) Let $\varphi: H \longrightarrow \operatorname{Aut}(N)$ be the action of H on N by conjugation, that is, $\varphi(h)(n):=h n h^{-1}$ for all $h \in H$ and $n \in N$. Show that there is an isomorphism $\theta: G \xrightarrow{\sim} N \rtimes_{\varphi} H$ which satisfies $\left.\theta\right|_{N}=j$ and $\alpha=\pi \circ \theta$. Draw a diagram containing two short exact sequences which explains the situation.
(f) Let M be a normal subgroup of N. Show that $M \unlhd G$ if and only if $h M h^{-1}=$ M for all $h \in H$.
2. Let p be a prime number and $n \geqslant 1$ an integer. Consider the natural action $\varphi: \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right) \longrightarrow \operatorname{Aut}\left(\mathbb{F}_{p}^{n}\right)$. Let $G=\mathbb{F}_{p}^{n} \rtimes_{\varphi} \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ and embed $\mathbb{F}_{p}^{n} \hookrightarrow G$ via Exercise 1. Let $L \leqslant \mathbb{F}_{p}^{n}$ be a \mathbb{F}_{p}-linear subspace of \mathbb{F}_{p}^{n}. Show that L is subnormal in G and that $L \unlhd G$ if and only if $L=0$ or $L=\mathbb{F}_{p}^{n}$.
3. Let G be a finite group.
(a) Suppose that G has a normal subgroup $N \unlhd G$ such that G / N is abelian. Prove that G has a normal subgroup of prime index, which contains N.
(b) Prove that G is solvable if and only if it has a normal series all whose factors are cyclic of prime order.
4. Let k be a field and $f \in k[X]$ a polynomial of prime degree p. Let $E=\operatorname{Sf}(f)$. Suppose that $\operatorname{Gal}(E / k)$ is cyclic of order p. Prove that f is irreducible.

