Assignment 21

Solvability by Radicals

1. Let be (N, \cdot) and (H, \cdot) be two groups and $\varphi : H \longrightarrow \operatorname{Aut}(N)$ a group homomorphism. Write $\varphi_h := \varphi(h) \in \operatorname{Aut}(N)$ for each $h \in H$. Define $G := N \rtimes_{\varphi} H$, the *(external) semidirect product of* N *and* H, as the set $N \times H$ with the binary operation

$$\forall n, n' \in N, \forall h, h' \in H, \ (n, h) \cdot_{\varphi} (n', h') = (n \cdot \varphi_h(n'), h \cdot h').$$

- (a) Check that $(N \rtimes_{\varphi} H, \cdot_{\varphi})$ is a group.
- (b) Prove: there is a short exact sequence $1 \longrightarrow N \xrightarrow{j} N \rtimes_{\varphi} H \xrightarrow{\pi} H \longrightarrow 1$.
- (c) Deduce that $G = N \rtimes_{\varphi} H$ contains two subgroups N_0, H_0 with $N_0 \leq G$, such that $N \cong N_0$ and $H \cong H_0$, satisfying the properties

$$\begin{cases} N_0 H_0 = G \\ N_0 \cap H_0 = \{1\}. \end{cases}$$

Conversely, let G be a group, $H \leq G$ a subgroup and $N \leq G$ a normal subgroup. We say that G is the *(inner) semidirect product of* N and H, if

$$\begin{cases} NH = G\\ N \cap H = \{1\} \end{cases}$$

In this case, we write $G = N \rtimes H$. Assume that this is the case.

- (d) Prove: there is a unique homomorphism $\alpha : G \longrightarrow H$ such that $\alpha|_H = \mathrm{id}_H$ and $\mathrm{ker}(\alpha) = N$.
- (e) Let $\varphi : H \longrightarrow \operatorname{Aut}(N)$ be the action of H on N by conjugation, that is, $\varphi(h)(n) := hnh^{-1}$ for all $h \in H$ and $n \in N$. Show that there is an isomorphism $\theta : G \xrightarrow{\sim} N \rtimes_{\varphi} H$ which satisfies $\theta|_N = j$ and $\alpha = \pi \circ \theta$. Draw a diagram containing two short exact sequences which explains the situation.
- (f) Let M be a normal subgroup of N. Show that $M \leq G$ if and only if $hMh^{-1} = M$ for all $h \in H$.
- 2. Let p be a prime number and $n \ge 1$ an integer. Consider the natural action $\varphi : \operatorname{GL}_n(\mathbb{F}_p) \longrightarrow \operatorname{Aut}(\mathbb{F}_p^n)$. Let $G = \mathbb{F}_p^n \rtimes_{\varphi} \operatorname{GL}_n(\mathbb{F}_p)$ and embed $\mathbb{F}_p^n \hookrightarrow G$ via Exercise 1. Let $L \le \mathbb{F}_p^n$ be a \mathbb{F}_p -linear subspace of \mathbb{F}_p^n . Show that L is subnormal in G and that $L \trianglelefteq G$ if and only if L = 0 or $L = \mathbb{F}_p^n$.

- 3. Let G be a finite group.
 - (a) Suppose that G has a normal subgroup $N \leq G$ such that G/N is abelian. Prove that G has a normal subgroup of prime index, which contains N.
 - (b) Prove that G is solvable if and only if it has a normal series all whose factors are cyclic of prime order.
- 4. Let k be a field and $f \in k[X]$ a polynomial of prime degree p. Let E = Sf(f). Suppose that Gal(E/k) is cyclic of order p. Prove that f is irreducible.