Algebra II

Assignment 22

FIXED SUBFIELD

- 1. Let E/k be a splitting field of $X^n 1 \in k[X]$ and $\Gamma_n(E)$ the subgroup of E^{\times} of *n*-th roots of unity. Show that
 - (a) If char(k) = 0, then $|\Gamma_n(E)| = n$.
 - (b) If char(k) = p, and $n = p^{\ell}m$ with $p \nmid m$, then $|\Gamma_n(E)| = m$.
- 2. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Recall that $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. List all subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))$ and for each subgroup H determine the subfield E^H .
- 3. Let p > 2 be a prime number and $\zeta := e^{\frac{2\pi i}{p}}$. Let $E = \mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$.
 - (a) Show that there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ of order 2. What is its generator? [*Hint:* It is an element of order 2]
 - (b) Prove that $\mathbb{Q}(\zeta + \zeta^{-1}) \subseteq E^H$ and that $[E : \mathbb{Q}(\zeta + \zeta^{-1})] \leq 2$.
 - (c) Deduce that $E^H = \mathbb{Q}(\zeta + \zeta^{-1}).$