Assignment 22

Fixed subfield

1. Let E / k be a splitting field of $X^{n}-1 \in k[X]$ and $\Gamma_{n}(E)$ the subgroup of E^{\times}of n-th roots of unity. Show that
(a) If $\operatorname{char}(k)=0$, then $\left|\Gamma_{n}(E)\right|=n$.
(b) If $\operatorname{char}(k)=p$, and $n=p^{\ell} m$ with $p \nmid m$, then $\left|\Gamma_{n}(E)\right|=m$.
2. Let $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Recall that $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. List all subgroups of $\operatorname{Gal}\left(\mathbb{Q}(\sqrt{2}, \sqrt{3})\right.$ and for each subgroup H determine the subfield E^{H}.
3. Let $p>2$ be a prime number and $\zeta:=e^{\frac{2 \pi i}{p}}$. Let $E=\mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E / \mathbb{Q}) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(a) Show that there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ of order 2. What is its generator? [Hint: It is an element of order 2]
(b) Prove that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \subseteq E^{H}$ and that $\left[E: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right] \leqslant 2$.
(c) Deduce that $E^{H}=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$.
