Assignment 23

Galois extensions. Constructions with ruler and compass.

1. Let E / k be a finite field extension, write $G:=\operatorname{Gal}(E / k)$ and consider an element $\alpha \in E$. Consider the polynomial

$$
q:=\prod_{\sigma \in G / \operatorname{Stab}_{G}(\alpha)}(X-\sigma(\alpha)) \in E[X] .
$$

Prove that $q \in E^{G}[X]$.
2. Let E / k be a finite Galois extension with Galois group $G=\operatorname{Gal}(E / k)$ of degree $n=[E: k]$. Define the trace $T: E \longrightarrow E$ by

$$
T(x)=\sum_{\sigma \in G} \sigma(x) .
$$

One can prove that this map coincides with the trace defined in Assignment 12, Exercise 7.
(a) Prove that $\operatorname{im}(T) \subseteq k$ and that T is k-linear.
(b) Show that T is not identically zero and deduce that $\operatorname{dim}(\operatorname{ker}(T))=n-1$. [Hint: Independence of characters].
(c) Now suppose that $\operatorname{Gal}(E / k)$ is cyclic and generated by an automorphism σ. Consider the linear map $\tau=\sigma-\mathrm{id}_{E}$. Prove that

$$
\operatorname{ker}(T)=\operatorname{im}(\tau)=\{\sigma(u)-u: u \in E\}
$$

3. Define the set $S \subset \mathbb{R}^{2}$ of constructible points as the smallest subset S of the Euclidean plane containing $O,(1,0)$ and such that:

- if $A, B, C, D \in S$ and the line through A and B is not parallel to the one through C and D, then the intersection point is in S;
- if $A, B, C, D, E \in S$, then all points of intersection between the line through A and B and the circle centered at C with radius equal to $d(D, E)$ are in S.
- if $A, B, C, D, E, F \in S$, then all points of intersection between the circle centered at C with radius equal to $d(D, E)$ and the circle centered at F with radius equal to $d(A, B)$ are in S.
(a) Suppose that the points A, B, C, D, E, F have coordinates in a common field $K \subset \mathbb{R}$. Explain why if a point X can be constructed by performing one of the two steps above, then its coordinates belong to a field extension K^{\prime} / K such that $\left[K^{\prime}: K\right] \leqslant 2$.

We say that a real number $r \in \mathbb{R}$ is constructible if the point $(r, 0) \in \mathbb{R}^{2}$ is constructible.
(b) Prove that the point $(a, b) \in \mathbb{R}^{2}$ is constructible if and only if a and b are constructible.
(c) Prove that a real number $r \in \mathbb{R}$ is constructible if and only if there are field extensions

$$
\mathbb{Q}=K_{0} \subset K_{1} \subset \cdots \subset K_{n}
$$

such that $\left[K_{i}: K_{i-1}\right] \leqslant 2$ and $r \in K_{n}$.
(d) Prove that the real numbers $\pi, \sqrt[3]{2}$ and $\cos \left(20^{\circ}\right)$ are not constructible. Explain what this means in terms of classical ruler-and-compass construction problems. [Hint: What is the degree of $\mathbb{Q}(z) / \mathbb{Q}$ if z is a constructible number? You may need the trigonometric identity $\left.\cos (3 \theta)=4 \cos ^{3}(\theta)-3 \cos (\theta)\right]$.

