Assignment 24

Symmetric functions. Galois correspondence.

- 1. Let $f = X^3 2 \in \mathbb{Q}[X]$ and consider its splitting field E. Recall that $\operatorname{Gal}(E/\mathbb{Q}) \cong S_3$. Write down the lattice of subgroups of S_3 and the corresponding fixed fields. Which of those are normal?
- 2. Let k be a field with $char(k) \neq 2$ and $n \ge 5$ an integer. Consider the field extension

$$E = k(Y_1, \ldots, Y_n)/k(e_1, \ldots, e_n) = K,$$

where $e_j \in k[Y_1, \ldots, Y_n]$ is, for each integer $1 \leq j \leq n$, the *j*-th elementary symmetric polynomial, so that $\operatorname{Gal}(E/K) = S_n$. Let E/L/K be the unique intermediate non-trivial Galois extension. Find a polynomial $f \in K[X]$ whose splitting field is L/K. [*Hint:* What is $\operatorname{Gal}(E/L)$? And $\operatorname{deg}(f)$?]

3. Let k be a field and $f \in k[X]$ a polynomial with distinct roots and E = Sf(f). Write $R(f) = \{z_1, \ldots, z_n\}$ to fix an embedding $\text{Gal}(E/k) \subset S_n$. Define the discriminant of f as

$$D(f) = \prod_{i < j} (z_i - z_j)^2.$$

- (a) Assume that $\operatorname{char}(k) \neq 2$. Prove that D(f) is a square in k if and only if $\operatorname{Gal}(E/k) \subset A_n$.
- (b) Show that $\mathbb{F}_4/\mathbb{F}_2$ is a counterexample in characteristic 2 to the previous part.
- 4. (Artin-Schreier theory) Let k be a field of characteristic p > 0 and $c \in k$ be such that $c \neq y^p y$ for every $y \in k$. Let $f = X^p X c \in k[X]$ and E = Sf(f).
 - (a) Let $x \in R(f)$. Prove that $x + \lambda \in R(f)$ for each $\lambda \in \mathbb{F}_p$.
 - (b) Deduce: f is irreducible, E = k(x) and $\operatorname{Gal}(E/k)$ is cyclic of order p.

We know want to show that all *p*-cyclic field extensions in characteristic *p* are of this form. Let E/k be a finite Galois extension with $\operatorname{char}(k) = p$ and $\operatorname{Gal}(E/k) = \langle \sigma \rangle$ cyclic of order *p*.

(c) Show that there exists $x \in E$ such that $\sigma(x) = x + 1$ [*Hint:* Assignment 23, Exercise 2(c)]

- (d) Prove that E = k(x) and that there exists $c \in k$ such that $\operatorname{irr}(E/k) = X^p X c$. [*Hint:* Consider $\prod_{\lambda=0}^{p-1} (X \sigma^{\lambda}(x))$. How can you prove that $x^p x \in k$?]
- 5. Let L/k be a finite field extension and fix an embedding $L \subset \overline{k}$.
 - (a) Show: there exists a minimal normal finite field extension E/k containing L.
 - (b) Show: if L/k is separable, then E/k is Galois (it is called the *Galois closure* of L/k).
- 6. We say that a field extension L/k is simple if there exists $x \in L$ such that L = k(x). In this exercise we want to prove the following result:

Lemma. A finite field extensions L/k is simple if and only if there are finitely many intermediate field extensions L/F/k.

- (a) Suppose that L = k(x) for some $x \in L$ and let L/F/k be an intermediate extension. Let f = irr(x, F) and $F_0 \subset F$ the extension of k generated by the coefficients of f. Prove that $F = F_0$. [Hint: Notice that $F(x) = F_0(x)$ and compare degrees]
- (b) Conclude that if L/k is simple, then it contains only finitely many intermediate subextensions [*Hint:* In part (a), f divides irr(x, k)]
- (c) Let k be an infinite field and V a k-vector space. Suppose that V_1, \ldots, V_m are finitely many vector subspaces of V, with $V_i \neq V$ for each i. Show that $\bigcup_{i=1}^m V_i \neq V$ [Hint: Induction on n]
- (d) Suppose that a finite field extension L/k contains only finitely many intermediate extensions. Prove that L/k is simple.
- 7. (*Primitive Element Theorem*) Let L/k be a finite separable field extension. Prove that there exists $x \in L$ such that L = k(x).
- 8. Prove that the field extension $\mathbb{F}_p(s,t)/\mathbb{F}_p(s^p,t^p)$, where s and t are formal variables, contains infinitely many intermediate extensions.