Assignment 25

Galois correspondence. Solvability by radicals.

1. In class, we stated the following result:

Proposition. Let k be a field of characteristic 0 and E / k a finite Galois extension with solvable $\operatorname{Gal}(E / k)$. Then E is contained in a radical extension of k.
In order to prove this result, we do an induction on $|\operatorname{Gal}(E / k)|=[E: k]$. In the case $E \neq k$ we take a normal subgroup $N \triangleleft \operatorname{Gal}(E / k)$ of prime index p (using Assignment 21, Exercise 3) and define k^{*} as the splitting field of $X^{p}-1 \in k[X]$.
(a) Prove that $k^{*}=k(w)$ for some root w of $X^{p}-1 \in k[X]$. Define $E^{*}:=E(w)$.
(b) Assume that $k^{*}=k$. Prove that E^{N} / k is a pure extension and conclude.
(c) Suppose now that $k^{*} \neq k$. Show that E^{*} / k^{*} is a Galois extension and that $\operatorname{Gal}\left(E^{*} / k^{*}\right)$ injects into $\operatorname{Gal}(E / k)$.
(d) Deduce that $\operatorname{Gal}\left(E^{*} / k^{*}\right)$ is solvable and that E^{*} / k^{*} is contained in a radical field extension M / k^{*}.
(e) Explain why M / k is radical as well and conclude the proof of the Lemma.
2. Let p be an odd prime number. Let $\zeta=e^{\frac{2 \pi i}{p}} \in \mathbb{C}$ and $E=\mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E / \mathbb{Q}) \cong \mathbb{F}_{p}^{\times}$. For $a \in \mathbb{F}_{p}^{\times}$, define the Legendre symbol

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a square in } \mathbb{F}_{p}^{\times} \\ -1 & \text { if } a \text { is a not square in } \mathbb{F}_{p}^{\times} .\end{cases}
$$

Define the complex number

$$
\tau=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \zeta^{a} .
$$

(a) Show that the map $\mathbb{F}_{p}^{\times} \longrightarrow\{ \pm 1\}$ sending $a \mapsto\left(\frac{a}{p}\right)$ is a group homomorphism.
(b) Prove that

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)
$$

and that this determines $\left(\frac{a}{p}\right) \in\{ \pm 1\}$ uniquely.
(c) Show that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$.
(d) For $b \in \mathbb{F}_{p}^{\times}$, let $\sigma_{b} \in \operatorname{Gal}(E / \mathbb{Q})$ be the automorphism $\sigma_{b}(\zeta)=\zeta^{b}$. Prove the equality $\sigma_{b}(\tau)=\left(\frac{b}{p}\right) \cdot \tau$.
(e) Prove that $\mathbb{Q}(\tau) / \mathbb{Q}$ is the unique quadratic intermediate extension of E / \mathbb{Q}.

We now want to determine the extension $\mathbb{Q}(\tau)$ by computing τ^{2} explicitly.
(f) Let $c \in \mathbb{F}_{p}^{\times}$. Show that

$$
\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)}= \begin{cases}-1 & \text { if } c \neq p-1 \\ p-1 & \text { if } c=p-1\end{cases}
$$

(g) Write

$$
\tau^{2}=\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{b \in \mathbb{F}_{p}^{\times}}\left(\frac{a b}{p}\right) \zeta^{a+b} .
$$

Substituting $b=a c$ with $c \in \mathbb{F}_{p}^{\times}$, deduce that

$$
\tau^{2}=-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)+\left(\frac{-1}{p}\right)(p-1)
$$

(h) Conclude: if $p \equiv 1(\bmod 4)$, then $\mathbb{Q}(\tau)=\mathbb{Q}(\sqrt{p})$; if $p \equiv 3(\bmod 4)$, then $\mathbb{Q}(\tau)=\mathbb{Q}(i \sqrt{p})$.

