D-MATH Prof. Marc Burger

Algebra II

FS18

Assignment 26

CYCLOTOMIC EXTENSIONS.

In the following, $\varphi : \mathbb{Z}_{\geq 1} \longrightarrow \mathbb{Z}_{\geq 0}$ is the Euler function $\varphi(n) = \operatorname{card}((\mathbb{Z}/n\mathbb{Z})^{\times})$. For each integer $n \geq 1$, we consider the *n*-th cyclotomic polynomial

$$\Phi_n := \prod_{a \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (T - e^{\frac{2\pi i}{n}a}) \in \mathbb{Z}[T].$$

- 1. Prove the following properties of the cyclotomic polynomials $\varphi_n \in \mathbb{Z}[T]$
 - (a) $\Phi_n(T) = T^{\varphi(n)} \Phi_n\left(\frac{1}{T}\right)$ for every integer $n \ge 2$.
 - (b) $\Phi_p(T) = T^{p-1} + \cdots + 1$ for every prime number p.
 - (c) $\Phi_{p^r}(T) = \Phi_p(T^{p^{r-1}})$ for every prime number p and integer $r \geqslant 1$.
 - (d) $\Phi_{2n}(T) = \Phi_n(-T)$ for every **odd** integer $n \ge 1$.
- 2. Let p be an odd prime number and $r \ge 2$ an integer. We want to prove that there is an isomorphism of abelian groups

$$(\mathbb{Z}/p^r\mathbb{Z})^{\times} = \mathbb{Z}/p^{r-1}\mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z}.$$

- (a) Explain why the statement is equivalent to proving that $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is cyclic.
- (b) Prove that there exists $g \in \mathbb{Z}$ which generates $(\mathbb{Z}/p\mathbb{Z})^{\times}$ and such that $g^{p-1} \not\equiv 1 \mod p^2$ [Hint: Let g be a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Look at $(g+p)^{p-1}$ modulo p^2 and eventually replace g with g+p]
- (c) Prove inductively that there are integers $k_1, k_2, \ldots, k_{r-1} \in \mathbb{Z}$ for which

$$g^{p^{j-1}(p-1)} = 1 + k_j p^j, \ p \nmid k_j$$

- (d) Deduce that $g^{p^{r-2}(p-1)} \not\equiv 1 \mod p^r$. Moreover, prove that $\operatorname{ord}_{(\mathbb{Z}/p^r\mathbb{Z})^{\times}}(g)$ divides $p^{r-1}(p-1)$.
- (e) Suppose that $g^{p^{\varepsilon}d} \equiv 1 \mod p^r$ for some integer $\varepsilon \geqslant 1$ and a proper divisor d of p-1. Deduce that $g^d \equiv 1 \mod p$ and derive a contradiction.
- (f) Conclude that g is a generator of $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$.
- 3. Prove that for every integer $r \ge 2$ there is an isomorphism of abelian groups

$$(\mathbb{Z}/2^r\mathbb{Z})^{\times} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{r-2}\mathbb{Z}.$$

More specifically, show for $r \ge 3$ that

$$(\mathbb{Z}/2^r\mathbb{Z})^{\times} \cong \{\pm 1\} \times \{1, 5, 5^2 \dots, 5^{2^{r-2}-1}\}.$$

- 4. Let n be a positive integer and $p \nmid n$ a prime number. Prove that the irreducible factors of $\Phi_n \in \mathbb{F}_p[X]$ are all distinct and their degree is equal to the order of $p + n\mathbb{Z}$ in $(\mathbb{Z}/n\mathbb{Z})^{\times}$. [Hint: You may want to prove the following claim: if α is a root of Φ_n , then α is a primitive root of 1.]
- 5. Let n be a positive integer. Prove that there are infinitely many primes p such that $p \equiv 1 \mod n$. [Hint: If one such prime p exists for every n, then one can find a bigger one p' satisfying $p' \equiv 1 \mod (n \cdot p)$]