Assignment 26

Cyclotomic extensions.

In the following, $\varphi: \mathbb{Z}_{\geqslant 1} \longrightarrow \mathbb{Z}_{\geqslant 0}$ is the Euler function $\varphi(n)=\operatorname{card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)$. For each integer $n \geqslant 1$, we consider the n-th cyclotomic polynomial

$$
\Phi_{n}:=\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}}\left(T-e^{\frac{2 \pi i a}{n} a}\right) \in \mathbb{Z}[T] .
$$

1. Prove the following properties of the cyclotomic polynomials $\varphi_{n} \in \mathbb{Z}[T]$
(a) $\Phi_{n}(T)=T^{\varphi(n)} \Phi_{n}\left(\frac{1}{T}\right)$ for every integer $n \geqslant 2$.
(b) $\Phi_{p}(T)=T^{p-1}+\cdots+1$ for every prime number p.
(c) $\Phi_{p^{r}}(T)=\Phi_{p}\left(T^{p^{r-1}}\right)$ for every prime number p and integer $r \geqslant 1$.
(d) $\Phi_{2 n}(T)=\Phi_{n}(-T)$ for every odd integer $n \geqslant 1$.
2. Let p be an odd prime number and $r \geqslant 2$ an integer. We want to prove that there is an isomorphism of abelian groups

$$
\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}=\mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z}
$$

(a) Explain why the statement is equivalent to proving that $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is cyclic.
(b) Prove that there exists $g \in \mathbb{Z}$ which generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$and such that $g^{p-1} \not \equiv 1$ $\bmod p^{2}$ [Hint: Let g be a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Look at $(g+p)^{p-1}$ modulo p^{2} and eventually replace g with $g+p$]
(c) Prove inductively that there are integers $k_{1}, k_{2}, \ldots, k_{r-1} \in \mathbb{Z}$ for which

$$
g^{p^{j-1}(p-1)}=1+k_{j} p^{j}, p \nmid k_{j}
$$

(d) Deduce that $g^{p^{r-2}(p-1)} \not \equiv 1 \bmod p^{r}$. Moreover, prove that $\operatorname{ord}_{\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)} \times(g)$ divides $p^{r-1}(p-1)$.
(e) Suppose that $g^{p^{\varepsilon} d} \equiv 1 \bmod p^{r}$ for some integer $\varepsilon \geqslant 1$ and a proper divisor d of $p-1$. Deduce that $g^{d} \equiv 1 \bmod p$ and derive a contradiction.
(f) Conclude that g is a generator of $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$.
3. Prove that for every integer $r \geqslant 2$ there is an isomorphism of abelian groups

$$
\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times}=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{r-2} \mathbb{Z}
$$

More specifically, show for $r \geqslant 3$ that

$$
\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times} \cong\{ \pm 1\} \times\left\{1,5,5^{2} \ldots, 5^{2^{r-2}-1}\right\}
$$

4. Let n be a positive integer and $p \nmid n$ a prime number. Prove that the irreducible factors of $\Phi_{n} \in \mathbb{F}_{p}[X]$ are all distinct and their degree is equal to the order of $p+n \mathbb{Z}$ in $(\mathbb{Z} / n \mathbb{Z})^{\times}$. [Hint: You may want to prove the following claim: if α is a root of Φ_{n}, then α is a primitive root of 1.]
5. Let n be a positive integer. Prove that there are infinitely many primes p such that $p \equiv 1 \bmod n$. [Hint: If one such prime p exists for every n, then one can find a bigger one p^{\prime} satisfying $\left.p^{\prime} \equiv 1 \bmod (n \cdot p)\right]$
