D-MATH Algebra 11 FS18

Prof. Marc Burger .
Solution 16

SEPARABILITY, COMPUTATION OF SOME (GALOIS GROUPS

1. Let f € k[X] and let E D k be a splitting field of f. We want to prove that f has
no multiple root in £ if and only if gedyx(f, f') = 1.

(a) Let F/k be a field extension and f, g € k[X]. Prove that gedyy(f,g) = 1 if
and only if ged gy (f, 9) = 1.

(b) Write f =[], (X — ;) in E[X]. Establish the formula

Hf’(oéi) ==+ (H(%‘ - %‘)) :

i<j
(c) Use the above steps in order to conclude.
Solution:

(a) Recall that the ged of to elements is unique up to association (i.e. multiplica-
tion by units). We prove that ged gy (f, 9) = gedyx(f, ) for all f, g € k[X]
by checking that they divide each other in F'[X]. The statement will imme-
diately follow.

First, we notice that gedyx(f, g) divides both f and g in k[X], hence also in
F[X], implying that it must divide their greatest common divisor ged px(f, 9)-
On the other hand, we can write ged,xi(f, 9) = pf + qg for some p, ¢ € k[X]
by Bezout’s identity. Since gedpx)(f, g) divides both f and g, it must then

divide gedy(x(f; 9)-
(b) We can write f = [[/_,(X —;) in E[X] by definition of splitting field. Recall
the Leibniz rule of the derivation (Assignment 3, Exercise 5¢):

Vp,q € E[X], (pq)' =pd +p'q.

Via an easy induction we can generalize this to

T



Applying this formula with f =[]}, (X — a;) we obtain

(B | REE)E

Evaluating this derivative at ay, all summand with ¢ # k vanish, because for
i # k the product contains the factor (ax — o) = 0. Hence

Fla) = ] (o —ay)

which implies

T o e fi (T e
:(_1)(3)( ﬁ (Oék—%))2

(c) By part (a), f and f’ are coprime in k[X] if and only if they are coprime
in F[X]. Since F[X] is a UFD and f factors into irreducible polynomials
as [ = [[_,(X — «;), it is coprime to f' in E[X] if and only if for each
¢t = 1,...,n the polynomial X — «; does not divide f’. This is equivalent
to saying that none of the «; is a root of f’, which in turns means that
[T, f'(c;) # 0. This last property is equivalent to the a; being all distinct.
Hence f and f” are coprime if and only if f has no multiple roots.

2. Let p be a prime number. Consider the polynomial ¢, := )){(p__ll € Q[X] and let

27e
p

(:=evr . Let £ :=Sf(p,).

(a) Prove that ¢, is irreducible in Q[X] and deduce that ¢, = irr(¢; Q).
(b) Show that £ = Q(().
(c) Prove that Gal(E/Q) = (Z/pZ)*.

Solution:

(a) See Assignment 11, Exercise 4.



(b) A complex root x of X?” — 1 must have absolute value equal to 1 (because
|z|P = |2P| = |1| = 1), hence it should be of the form x = e* for a € R.
Imposing x? = 1 we obtain a = 2m’§ for some k € Z. Since €™ = 1, we can
consider k € {0,1,...,p— 1}. We see than that

p—1

Xr—1=[[x-¢h.

k=0
so that

p—1

Yp = H(X - Ck)

k=1

Since Q(¢) contains all power of ¢, we can conclude that £ = Q(().

(c) By part (b), an automorphism o of E over Q is uniquely determined by the
image of (. Since Gal(£/Q) maps roots of ¢, to roots of ¢,, we know that

U(C) € {Cka ke {1727' Y Za 1}}
We define the map

§:(Z/pZ)" — Gal(E/Q)
k+pZ — (¢ CF).

This map is well-defined because (? = 1 for each ¢ € Z. In order to prove that
it is a group homomorphism, let ky, ky € Z, (k1 +pZ) - (ko +pZ) = kiko + pZ.
Then

E(kiks + pZ)(C) = (M2,

while

(€01 + PZ) 0 E(ks + PZ))(C) = (k1 +pZ))(CF2) Z (¢Br)k2 = ik,

where in the step () we used the fact that £(ky+pZ) is a field homomorphism
sending ¢ > ¢*1. This means that &(ky +pZ)o&(ky+pZ) = E(kike+pZ)((ky +
pZ) - (ko + pZ)), so that £ is a group homomorphism. It is surjective by the
observations done in the beginning of this part. It is injective because

ker(§) = {k+pZ: £(k + pZ) = idg} = {k+ pZ: (¥ = (} = {1 + pZ}.
Hence we have proven that Gal(E/Q) is isomorphic to (Z/pZ)*.

3. Let £ =Q(v/2,V3).
(a) Prove that [E: Q] = 4.



(b) Show that Gal(E/Q) = Z /27 x 7./ 27.
Solution:

(a) First we check that v/3 ¢ Q(v/2). Suppose that for a,b € Q the equality
(a + bv2)? = 3 holds. Then a® + 2b* + 2abv/2 = 3, which by Q-linear
independence of 1 and v/2 implies that ab = 0. If @ = 0, then 26> = 3,
while if b = 0, then a? = 3. Both eventuality give a contradiction. Hence
E/Q(V/2) is not a trivial extension. Since it is generated by the element /3
which is a root of X? — 3 € Q(v/2)[X], we see that [E : Q(v/2)] = 2. Then

by multiplicativity of the degree in towers, we obtain
[E:Q]=[E:Q(V2)][Q(vV2):Q=2-2=4.

(b) As E is the splitting field of the separable irreducible polynomial X?* — 3 €
Q(v/2)[X], we know that 2| Gal(E/Q(v/2)). Notice that an automorphism
o € Gal(E/Q(v/2)) is uniquely determined by the image of v/3, which must
be either v/3 or —v/3. Hence Gal(E/Q(1/2)) contains precisely 2 elements:
the identity id and o35 : V3 =3 (which sends V2 = V2 by definition of
Gal(E/Q(v2))).

Similarly, one sees that Gal(E/Q(v/3)) = {id, 05} where oy maps v/2 — —/2
(and V3 \/3)

The automorphisms of £ above mentioned are all elements of Gal(E/Q) as
well, which contains the 4 distinct automorphisms id, 05, 03,09 0 03. On the
other hand, ¢ € Gal(E/Q) is uniquely determined by the images of v/2 and
V3, and since both can be mapped to precisely two values, we have at most
4 possibilities. Hence Gal(E/Q) = {id, 09, 03,02 0 03}. The only two groups
up to isomorphism containing 4 elements are Z/47 and Z /27 x 7./ 27.. Notice
that o, and o3 have order 2 (because if we perform o; twice, both V2 and V3
are mapped to themselves), while Z/4Z contains only one element of order
2. Hence

Gal(E/Q) = Z,/27 x 7,/27.

4. Show that the Galois group of X3 — 2 € Q[X] is isomorphic to S3. [Hint: Let
FE = Sf(X3—2). Find the roots of X*—2 in C. Consider the intermediate extension
Q(exp(27i/3))/Q of E and show that [E : Q] > 3]

Solution: Recall that Gal(E/Q) can be seen as a subgroup of S3 by considering
its actions on the roots of X3 — 2. Hence, in order to prove that Gal(E/Q) = S,
it is enough to check that | Gal(E/Q)| > 6. We see that the roots of X® —2 in C
are

V2, V2, V2¢,



where ¢ = ¢’5". Hence E = Q(V2, v2¢, v2¢?) = Q(v/2,¢). Tt contains the inter-
mediate extensions Q(+v/2)/Q and Q(¢)/Q which have degree 3 and 2 respectively
since X? — 2 and X2 + X + 1 are their respective minimal polynomial over Q
(X? — 2 € Q[X] is irreducible by Eisenstein’s criterion, X? + X + 1 € Q[X] is
irreducible by Exercise 2). Hence, by multiplicativity of the degree, 2 and 3 are
divisors of [E : Q]. Moreover [E : Q(+/2] < 2 because (2 + ¢ + 1. Then

6<[E:Q=[E:Q(V2[Q(V2):Q<2-3=6,
so that [E : Q] = 6. Then, again by multiplicativity of the degree, we see that
[E:Q(V2)] =2 and [E: Q(¢)] = 3.

By Corollary I1.19 seen in class, 2 divides | Gal(E/Q(+v/2))| and 3 divides | Gal(E/Q(C))|.
Since those two Galois groups are subgroups of Gal(F/Q), we deduce that 6 divides
| Gal(£//Q)|. By the initial observation, we can conclude that Gal(E/Q) = S;.



