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Solution 16

Separability, computation of some Galois groups

1. Let f ∈ k[X] and let E ⊃ k be a splitting field of f . We want to prove that f has
no multiple root in E if and only if gcdk[X](f, f

′) = 1.

(a) Let F/k be a field extension and f, g ∈ k[X]. Prove that gcdk[X](f, g) = 1 if
and only if gcdF [X](f, g) = 1.

(b) Write f =
∏n

i=1(X − αi) in E[X]. Establish the formula

n∏
i=1

f ′(αi) = ±

(∏
i<j

(αi − αj)

)2

.

(c) Use the above steps in order to conclude.

Solution:

(a) Recall that the gcd of to elements is unique up to association (i.e. multiplica-
tion by units). We prove that gcdF [X](f, g) = gcdk[X](f, g) for all f, g ∈ k[X]
by checking that they divide each other in F [X]. The statement will imme-
diately follow.

First, we notice that gcdk[X](f, g) divides both f and g in k[X], hence also in
F [X], implying that it must divide their greatest common divisor gcdF [X](f, g).
On the other hand, we can write gcdk[X](f, g) = pf + qg for some p, q ∈ k[X]
by Bezout’s identity. Since gcdF [X](f, g) divides both f and g, it must then
divide gcdk[X](f, g).

(b) We can write f =
∏n

i=1(X−αi) in E[X] by definition of splitting field. Recall
the Leibniz rule of the derivation (Assignment 3, Exercise 5c):

∀p, q ∈ E[X], (pq)′ = pq′ + p′q.

Via an easy induction we can generalize this to

∀i ∈ Z>1, ∀p1, . . . , pr ∈ E[X], (p1 · · · pr)′ =
r∑
i=1

(
p′i
∏
j 6=i

j=1,...,r

pj

)
.
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Applying this formula with f =
∏n

i=1(X − αi) we obtain

f ′ =
n∑
i=1

(
1 ·

∏
j 6=i

j=1,...,n

(X − αj)
)
.

Evaluating this derivative at αk, all summand with i 6= k vanish, because for
i 6= k the product contains the factor (αk − αk) = 0. Hence

f ′(αk) =
∏
j 6=k

j=1,...,n

(αk − αj)

which implies

n∏
k=1

f ′(αk) =
n∏
k=1

∏
j 6=k

j=1,...,n

(αk − αj) =
n∏
k=1

( ∏
j>k

j=1,...,n

(αk − αj)
∏
j<k

j=1,...,n

(−1)(αj − αk)
)

=
n∏
j=1

( ∏
k>j

k=1,...,n

(αj − αk)
) n∏
k=1

(−1)k−1
( ∏

j<k
j=1,...,n

(αj − αk)
)

= (−1)(
n
2)
( n∏

16j<k6n

(αk − αj)
)2
.

(c) By part (a), f and f ′ are coprime in k[X] if and only if they are coprime
in E[X]. Since E[X] is a UFD and f factors into irreducible polynomials
as f =

∏n
i=1(X − αi), it is coprime to f ′ in E[X] if and only if for each

i = 1, . . . , n the polynomial X − αi does not divide f ′. This is equivalent
to saying that none of the αi is a root of f ′, which in turns means that∏n

i=1 f
′(αi) 6= 0. This last property is equivalent to the αi being all distinct.

Hence f and f ′ are coprime if and only if f has no multiple roots.

2. Let p be a prime number. Consider the polynomial ϕp := Xp−1
X−1 ∈ Q[X] and let

ζ := e
2πi
p . Let E := Sf(ϕp).

(a) Prove that ϕp is irreducible in Q[X] and deduce that ϕp = irr(ζ;Q).

(b) Show that E = Q(ζ).

(c) Prove that Gal(E/Q) = (Z/pZ)×.

Solution:

(a) See Assignment 11, Exercise 4.
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(b) A complex root x of Xp − 1 must have absolute value equal to 1 (because
|x|p = |xp| = |1| = 1), hence it should be of the form x = eαi for α ∈ R.
Imposing xp = 1 we obtain α = 2πik

p
for some k ∈ Z. Since e2πi = 1, we can

consider k ∈ {0, 1, . . . , p− 1}. We see than that

Xp − 1 =

p−1∏
k=0

(X − ζk),

so that

ϕp =

p−1∏
k=1

(X − ζk).

Since Q(ζ) contains all power of ζ, we can conclude that E = Q(ζ).

(c) By part (b), an automorphism σ of E over Q is uniquely determined by the
image of ζ. Since Gal(E/Q) maps roots of ϕp to roots of ϕp, we know that
σ(ζ) ∈ {ζk, k ∈ {1, 2, . . . , p− 1}}.
We define the map

ξ : (Z/pZ)× −→ Gal(E/Q)

k + pZ 7−→ (ζ 7→ ζk).

This map is well-defined because ζ`p = 1 for each ` ∈ Z. In order to prove that
it is a group homomorphism, let k1, k2 ∈ Z, (k1 +pZ) · (k2 +pZ) := k1k2 +pZ.
Then

ξ(k1k2 + pZ)(ζ) = ζk1k2 ,

while

(ξ(k1 + pZ) ◦ ξ(k2 + pZ))(ζ) = (ξ(k1 + pZ))(ζk2)
(∗)
= (ζk1)k2 = ζk1k2 ,

where in the step (∗) we used the fact that ξ(k1+pZ) is a field homomorphism
sending ζ 7→ ζk1 . This means that ξ(k1+pZ)◦ξ(k2+pZ) = ξ(k1k2+pZ)((k1+
pZ) · (k2 + pZ)), so that ξ is a group homomorphism. It is surjective by the
observations done in the beginning of this part. It is injective because

ker(ξ) = {k + pZ : ξ(k + pZ) = idE} = {k + pZ : ζk = ζ} = {1 + pZ}.

Hence we have proven that Gal(E/Q) is isomorphic to (Z/pZ)×.

3. Let E = Q(
√

2,
√

3).

(a) Prove that [E : Q] = 4.
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(b) Show that Gal(E/Q) = Z/2Z× Z/2Z.

Solution:

(a) First we check that
√

3 6∈ Q(
√

2). Suppose that for a, b ∈ Q the equality
(a + b

√
2)2 = 3 holds. Then a2 + 2b2 + 2ab

√
2 = 3, which by Q-linear

independence of 1 and
√

2 implies that ab = 0. If a = 0, then 2b2 = 3,
while if b = 0, then a2 = 3. Both eventuality give a contradiction. Hence
E/Q(

√
2) is not a trivial extension. Since it is generated by the element

√
3

which is a root of X2 − 3 ∈ Q(
√

2)[X], we see that [E : Q(
√

2)] = 2. Then
by multiplicativity of the degree in towers, we obtain

[E : Q] = [E : Q(
√

2)][Q(
√

2) : Q] = 2 · 2 = 4.

(b) As E is the splitting field of the separable irreducible polynomial X2 − 3 ∈
Q(
√

2)[X], we know that 2|Gal(E/Q(
√

2)). Notice that an automorphism
σ ∈ Gal(E/Q(

√
2)) is uniquely determined by the image of

√
3, which must

be either
√

3 or −
√

3. Hence Gal(E/Q(
√

2)) contains precisely 2 elements:
the identity id and σ3 :

√
3 7→ −

√
3 (which sends

√
2 7→

√
2 by definition of

Gal(E/Q(
√

2))).

Similarly, one sees that Gal(E/Q(
√

3)) = {id, σ2} where σ2 maps
√

2 7→ −
√

2
(and

√
3 7→

√
3).

The automorphisms of E above mentioned are all elements of Gal(E/Q) as
well, which contains the 4 distinct automorphisms id, σ2, σ3, σ2 ◦ σ3. On the
other hand, σ ∈ Gal(E/Q) is uniquely determined by the images of

√
2 and√

3, and since both can be mapped to precisely two values, we have at most
4 possibilities. Hence Gal(E/Q) = {id, σ2, σ3, σ2 ◦ σ3}. The only two groups
up to isomorphism containing 4 elements are Z/4Z and Z/2Z×Z/2Z. Notice
that σ2 and σ3 have order 2 (because if we perform σj twice, both

√
2 and

√
3

are mapped to themselves), while Z/4Z contains only one element of order
2. Hence

Gal(E/Q) ∼= Z/2Z× Z/2Z.

4. Show that the Galois group of X3 − 2 ∈ Q[X] is isomorphic to S3. [Hint: Let
E = Sf(X3−2). Find the roots of X3−2 in C. Consider the intermediate extension
Q(exp(2πi/3))/Q of E and show that [E : Q] > 3.]

Solution: Recall that Gal(E/Q) can be seen as a subgroup of S3 by considering
its actions on the roots of X3 − 2. Hence, in order to prove that Gal(E/Q) ∼= S3,
it is enough to check that |Gal(E/Q)| > 6. We see that the roots of X3 − 2 in C
are

3
√

2,
3
√

2ζ,
3
√

2ζ2,
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where ζ = e
2πi
3 . Hence E = Q( 3

√
2, 3
√

2ζ, 3
√

2ζ2) = Q( 3
√

2, ζ). It contains the inter-
mediate extensions Q( 3

√
2)/Q and Q(ζ)/Q which have degree 3 and 2 respectively

since X3 − 2 and X2 + X + 1 are their respective minimal polynomial over Q
(X3 − 2 ∈ Q[X] is irreducible by Eisenstein’s criterion, X2 + X + 1 ∈ Q[X] is
irreducible by Exercise 2). Hence, by multiplicativity of the degree, 2 and 3 are
divisors of [E : Q]. Moreover [E : Q( 3

√
2] 6 2 because ζ2 + ζ + 1. Then

6 6 [E : Q] = [E : Q(
3
√

2][Q(
3
√

2) : Q] 6 2 · 3 = 6,

so that [E : Q] = 6. Then, again by multiplicativity of the degree, we see that

[E : Q(
3
√

2)] = 2 and [E : Q(ζ)] = 3.

By Corollary II.19 seen in class, 2 divides |Gal(E/Q( 3
√

2))| and 3 divides |Gal(E/Q(ζ))|.
Since those two Galois groups are subgroups of Gal(E/Q), we deduce that 6 divides
|Gal(E/Q)|. By the initial observation, we can conclude that Gal(E/Q) ∼= S3.
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