Solution 16

SEPARABILITY, COMPUTATION OF SOME GALOIS GROUPS

- 1. Let $f \in k[X]$ and let $E \supset k$ be a splitting field of f. We want to prove that f has no multiple root in E if and only if $gcd_{k[X]}(f, f') = 1$.
 - (a) Let F/k be a field extension and $f, g \in k[X]$. Prove that $gcd_{k[X]}(f,g) = 1$ if and only if $gcd_{F[X]}(f,g) = 1$.
 - (b) Write $f = \prod_{i=1}^{n} (X \alpha_i)$ in E[X]. Establish the formula

$$\prod_{i=1}^{n} f'(\alpha_i) = \pm \left(\prod_{i < j} (\alpha_i - \alpha_j)\right)^2.$$

(c) Use the above steps in order to conclude.

Solution:

(a) Recall that the gcd of to elements is unique up to association (i.e. multiplication by units). We prove that $gcd_{F[X]}(f,g) = gcd_{k[X]}(f,g)$ for all $f,g \in k[X]$ by checking that they divide each other in F[X]. The statement will immediately follow.

First, we notice that $\operatorname{gcd}_{k[X]}(f,g)$ divides both f and g in k[X], hence also in F[X], implying that it must divide their greatest common divisor $\operatorname{gcd}_{F[X]}(f,g)$. On the other hand, we can write $\operatorname{gcd}_{k[X]}(f,g) = pf + qg$ for some $p, q \in k[X]$ by Bezout's identity. Since $\operatorname{gcd}_{F[X]}(f,g)$ divides both f and g, it must then divide $\operatorname{gcd}_{k[X]}(f,g)$.

(b) We can write $f = \prod_{i=1}^{n} (X - \alpha_i)$ in E[X] by definition of splitting field. Recall the Leibniz rule of the derivation (Assignment 3, Exercise 5c):

$$\forall p, q \in E[X], \ (pq)' = pq' + p'q.$$

Via an easy induction we can generalize this to

$$\forall i \in \mathbb{Z}_{\geq 1}, \ \forall p_1, \dots, p_r \in E[X], \ (p_1 \cdots p_r)' = \sum_{i=1}^r \left(p_i' \prod_{\substack{j \neq i \\ j=1,\dots,r}} p_j \right).$$

FS18

Applying this formula with $f = \prod_{i=1}^{n} (X - \alpha_i)$ we obtain

$$f' = \sum_{i=1}^{n} \left(1 \cdot \prod_{\substack{j \neq i \\ j=1,\dots,n}} (X - \alpha_j) \right).$$

Evaluating this derivative at α_k , all summand with $i \neq k$ vanish, because for $i \neq k$ the product contains the factor $(\alpha_k - \alpha_k) = 0$. Hence

$$f'(\alpha_k) = \prod_{\substack{j \neq k \\ j=1,\dots,n}} (\alpha_k - \alpha_j)$$

which implies

$$\prod_{k=1}^{n} f'(\alpha_{k}) = \prod_{k=1}^{n} \prod_{\substack{j \neq k \\ j=1,\dots,n}} (\alpha_{k} - \alpha_{j}) = \prod_{k=1}^{n} \left(\prod_{\substack{j > k \\ j=1,\dots,n}} (\alpha_{k} - \alpha_{j}) \prod_{\substack{j < k \\ j=1,\dots,n}} (-1)(\alpha_{j} - \alpha_{k}) \right)$$
$$= \prod_{j=1}^{n} \left(\prod_{\substack{k > j \\ k=1,\dots,n}} (\alpha_{j} - \alpha_{k}) \right) \prod_{k=1}^{n} (-1)^{k-1} \left(\prod_{\substack{j < k \\ j=1,\dots,n}} (\alpha_{j} - \alpha_{k}) \right)$$
$$= (-1)^{\binom{n}{2}} \left(\prod_{\substack{1 \le j < k \le n}} (\alpha_{k} - \alpha_{j}) \right)^{2}.$$

- (c) By part (a), f and f' are coprime in k[X] if and only if they are coprime in E[X]. Since E[X] is a UFD and f factors into irreducible polynomials as $f = \prod_{i=1}^{n} (X - \alpha_i)$, it is coprime to f' in E[X] if and only if for each $i = 1, \ldots, n$ the polynomial $X - \alpha_i$ does not divide f'. This is equivalent to saying that none of the α_i is a root of f', which in turns means that $\prod_{i=1}^{n} f'(\alpha_i) \neq 0$. This last property is equivalent to the α_i being all distinct. Hence f and f' are coprime if and only if f has no multiple roots.
- 2. Let p be a prime number. Consider the polynomial $\varphi_p := \frac{X^{p-1}}{X-1} \in \mathbb{Q}[X]$ and let $\zeta := e^{\frac{2\pi i}{p}}$. Let $E := \mathrm{Sf}(\varphi_p)$.
 - (a) Prove that φ_p is irreducible in $\mathbb{Q}[X]$ and deduce that $\varphi_p = \operatorname{irr}(\zeta; \mathbb{Q})$.
 - (b) Show that $E = \mathbb{Q}(\zeta)$.
 - (c) Prove that $\operatorname{Gal}(E/\mathbb{Q}) = (\mathbb{Z}/p\mathbb{Z})^{\times}$.

Solution:

(a) See Assignment 11, Exercise 4.

(b) A complex root x of $X^p - 1$ must have absolute value equal to 1 (because $|x|^p = |x^p| = |1| = 1$), hence it should be of the form $x = e^{\alpha i}$ for $\alpha \in \mathbb{R}$. Imposing $x^p = 1$ we obtain $\alpha = 2\pi i \frac{k}{p}$ for some $k \in \mathbb{Z}$. Since $e^{2\pi i} = 1$, we can consider $k \in \{0, 1, \ldots, p-1\}$. We see than that

$$X^{p} - 1 = \prod_{k=0}^{p-1} (X - \zeta^{k}),$$

so that

$$\varphi_p = \prod_{k=1}^{p-1} (X - \zeta^k).$$

Since $\mathbb{Q}(\zeta)$ contains all power of ζ , we can conclude that $E = \mathbb{Q}(\zeta)$.

(c) By part (b), an automorphism σ of E over \mathbb{Q} is uniquely determined by the image of ζ . Since $\operatorname{Gal}(E/\mathbb{Q})$ maps roots of φ_p to roots of φ_p , we know that $\sigma(\zeta) \in \{\zeta^k, k \in \{1, 2, \ldots, p-1\}\}$.

We define the map

$$\xi : (\mathbb{Z}/p\mathbb{Z})^{\times} \longrightarrow \operatorname{Gal}(E/\mathbb{Q})$$
$$k + p\mathbb{Z} \longmapsto (\zeta \mapsto \zeta^k).$$

This map is well-defined because $\zeta^{\ell p} = 1$ for each $\ell \in \mathbb{Z}$. In order to prove that it is a group homomorphism, let $k_1, k_2 \in \mathbb{Z}, (k_1 + p\mathbb{Z}) \cdot (k_2 + p\mathbb{Z}) := k_1k_2 + p\mathbb{Z}$. Then

$$\xi(k_1k_2 + p\mathbb{Z})(\zeta) = \zeta^{k_1k_2},$$

while

$$(\xi(k_1 + p\mathbb{Z}) \circ \xi(k_2 + p\mathbb{Z}))(\zeta) = (\xi(k_1 + p\mathbb{Z}))(\zeta^{k_2}) \stackrel{(*)}{=} (\zeta^{k_1})^{k_2} = \zeta^{k_1k_2},$$

where in the step (*) we used the fact that $\xi(k_1 + p\mathbb{Z})$ is a field homomorphism sending $\zeta \mapsto \zeta^{k_1}$. This means that $\xi(k_1 + p\mathbb{Z}) \circ \xi(k_2 + p\mathbb{Z}) = \xi(k_1k_2 + p\mathbb{Z})((k_1 + p\mathbb{Z}) \cdot (k_2 + p\mathbb{Z}))$, so that ξ is a group homomorphism. It is surjective by the observations done in the beginning of this part. It is injective because

$$\ker(\xi) = \{k + p\mathbb{Z} : \xi(k + p\mathbb{Z}) = \mathrm{id}_E\} = \{k + p\mathbb{Z} : \zeta^k = \zeta\} = \{1 + p\mathbb{Z}\}.$$

Hence we have proven that $\operatorname{Gal}(E/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

3. Let
$$E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
.

(a) Prove that $[E:\mathbb{Q}] = 4$.

(b) Show that $\operatorname{Gal}(E/\mathbb{Q}) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Solution:

(a) First we check that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$. Suppose that for $a, b \in \mathbb{Q}$ the equality $(a + b\sqrt{2})^2 = 3$ holds. Then $a^2 + 2b^2 + 2ab\sqrt{2} = 3$, which by \mathbb{Q} -linear independence of 1 and $\sqrt{2}$ implies that ab = 0. If a = 0, then $2b^2 = 3$, while if b = 0, then $a^2 = 3$. Both eventuality give a contradiction. Hence $E/\mathbb{Q}(\sqrt{2})$ is not a trivial extension. Since it is generated by the element $\sqrt{3}$ which is a root of $X^2 - 3 \in \mathbb{Q}(\sqrt{2})[X]$, we see that $[E : \mathbb{Q}(\sqrt{2})] = 2$. Then by multiplicativity of the degree in towers, we obtain

$$[E:\mathbb{Q}] = [E:\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4.$$

(b) As E is the splitting field of the separable irreducible polynomial $X^2 - 3 \in \mathbb{Q}(\sqrt{2})[X]$, we know that $2|\operatorname{Gal}(E/\mathbb{Q}(\sqrt{2}))$. Notice that an automorphism $\sigma \in \operatorname{Gal}(E/\mathbb{Q}(\sqrt{2}))$ is uniquely determined by the image of $\sqrt{3}$, which must be either $\sqrt{3}$ or $-\sqrt{3}$. Hence $\operatorname{Gal}(E/\mathbb{Q}(\sqrt{2}))$ contains precisely 2 elements: the identity id and $\sigma_3 : \sqrt{3} \mapsto -\sqrt{3}$ (which sends $\sqrt{2} \mapsto \sqrt{2}$ by definition of $\operatorname{Gal}(E/\mathbb{Q}(\sqrt{2}))$).

Similarly, one sees that $\operatorname{Gal}(E/\mathbb{Q}(\sqrt{3})) = \{\operatorname{id}, \sigma_2\}$ where σ_2 maps $\sqrt{2} \mapsto -\sqrt{2}$ (and $\sqrt{3} \mapsto \sqrt{3}$).

The automorphisms of E above mentioned are all elements of $\operatorname{Gal}(E/\mathbb{Q})$ as well, which contains the 4 distinct automorphisms $\operatorname{id}, \sigma_2, \sigma_3, \sigma_2 \circ \sigma_3$. On the other hand, $\sigma \in \operatorname{Gal}(E/\mathbb{Q})$ is uniquely determined by the images of $\sqrt{2}$ and $\sqrt{3}$, and since both can be mapped to precisely two values, we have at most 4 possibilities. Hence $\operatorname{Gal}(E/\mathbb{Q}) = \{\operatorname{id}, \sigma_2, \sigma_3, \sigma_2 \circ \sigma_3\}$. The only two groups up to isomorphism containing 4 elements are $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Notice that σ_2 and σ_3 have order 2 (because if we perform σ_j twice, both $\sqrt{2}$ and $\sqrt{3}$ are mapped to themselves), while $\mathbb{Z}/4\mathbb{Z}$ contains only one element of order 2. Hence

$$\operatorname{Gal}(E/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

4. Show that the Galois group of $X^3 - 2 \in \mathbb{Q}[X]$ is isomorphic to S_3 . [*Hint:* Let $E = \mathrm{Sf}(X^3 - 2)$. Find the roots of $X^3 - 2$ in \mathbb{C} . Consider the intermediate extension $\mathbb{Q}(\exp(2\pi i/3))/\mathbb{Q}$ of E and show that $[E:\mathbb{Q}] > 3$.]

Solution: Recall that $\operatorname{Gal}(E/\mathbb{Q})$ can be seen as a subgroup of S_3 by considering its actions on the roots of $X^3 - 2$. Hence, in order to prove that $\operatorname{Gal}(E/\mathbb{Q}) \cong S_3$, it is enough to check that $|\operatorname{Gal}(E/\mathbb{Q})| \ge 6$. We see that the roots of $X^3 - 2$ in \mathbb{C} are

$$\sqrt[3]{2}, \sqrt[3]{2}\zeta, \sqrt[3]{2}\zeta^{2},$$

where $\zeta = e^{\frac{2\pi i}{3}}$. Hence $E = \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}\zeta, \sqrt[3]{2}\zeta^2) = \mathbb{Q}(\sqrt[3]{2}, \zeta)$. It contains the intermediate extensions $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ and $\mathbb{Q}(\zeta)/\mathbb{Q}$ which have degree 3 and 2 respectively since $X^3 - 2$ and $X^2 + X + 1$ are their respective minimal polynomial over \mathbb{Q} $(X^3 - 2 \in \mathbb{Q}[X]$ is irreducible by Eisenstein's criterion, $X^2 + X + 1 \in \mathbb{Q}[X]$ is irreducible by Exercise 2). Hence, by multiplicativity of the degree, 2 and 3 are divisors of $[E:\mathbb{Q}]$. Moreover $[E:\mathbb{Q}(\sqrt[3]{2}] \leq 2$ because $\zeta^2 + \zeta + 1$. Then

$$6 \leqslant [E:\mathbb{Q}] = [E:\mathbb{Q}(\sqrt[3]{2}][\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] \leqslant 2 \cdot 3 = 6,$$

so that $[E:\mathbb{Q}] = 6$. Then, again by multiplicativity of the degree, we see that

$$[E: \mathbb{Q}(\sqrt[3]{2})] = 2$$
 and $[E: \mathbb{Q}(\zeta)] = 3$.

By Corollary II.19 seen in class, 2 divides $|\operatorname{Gal}(E/\mathbb{Q}(\sqrt[3]{2}))|$ and 3 divides $|\operatorname{Gal}(E/\mathbb{Q}(\zeta))|$. Since those two Galois groups are subgroups of $\operatorname{Gal}(E/\mathbb{Q})$, we deduce that 6 divides $|\operatorname{Gal}(E/\mathbb{Q})|$. By the initial observation, we can conclude that $\operatorname{Gal}(E/\mathbb{Q}) \cong S_3$.