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RADICAL EXTENSIONS, TRANSITIVE GROUP ACTIONS

1. Let f = X3+ pX +q € Q[X] be an irreducible polynomial. Let R(f) = {21, 29, 23}
and E = Sf(f).

(a) Define the discriminant of f as

i<j
Prove that D(f) = —4p® — 27¢*> # 0. [Hint: f = (X — 21)(X — 22)(X — 23)]
(b) Notice that E contains the square roots of D(f).

(c) Suppose that D(f) is not a square in Q. Show that Gal(E/Q) = S.

(d) Suppose that D(f) is a square in Q. Show that there exists no automorphism
o € Gal(E/Q) switching z; and 29 and deduce that Gal(E/Q) = As.

(e) Prove that the roots of f are all real if and only if D(f) > 0. Else, f has one
real root and two non-real conjugated roots.

Solution:

(a) Since Q has characteristic zero and f is irreducible, we know that f is sepa-
rable. Hence z; # z3 # z3 # z1, so that D(f) # 0 by definition.

Following the hint, we notice that z12023 = —q, 2129 + 2123 + 2223 = p and
z1 + 22 + z3 = 0. Hence

D(f) = (21 — )" (21 — 23)*(22 — 23)"
= (22425 — 2212 (22 + 25 — 22123) (25 + 25 — 22p23)
3
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+ 4212223222-223' — 8272325
i#j 3
= szz? - 2225’25’ — QQ(Z 2z — sz’) — 64°.
i#j i<j i#j i=1



We know construct symmetric expressions of 2y, 29, z3 out of z; + 29 + 23,
2129 + 2123 + 2023 and 212923 in order to write the above expression in terms
of p and ¢q. First, notice that z; + 25 + 23 = 0 implies that

3
Zz Zz] ZZ,?Zj+ZZ?

=1 7=1 i#£j
3 3
0= (Z z)? = Z 2+ 3 Z 22 + 6212923
i=1 i=1 i#j
from which we obtain, using 212923 = —q,
3
Z 27z; = 3q and sz’ = —3q.
i#j i=1

Moreover, we compute

3

3
P’ = (Z Zizj) Z + 2212923 Z Zi = Z 21222.

1<J 1<J 1<j
Then
—2p° = Z Zj; - Z 2 zj = 321228 + Zz4z2 — Z 2142]2 = —2p° — 3¢
i<y i#] i#]
Also,
3 3 3
4p* = sz ZZJQ = Zz —|—2222z2 - sz = 2p%,
1<j =1

which lets us compute
3 3
I S S I M e
i=1 j=1 i=1 i<j
from which we obtain the remaining expression appearing D(f) via
= ZZ?ZZJ?) sz —1—222325’ - sz’zjg’ = 3¢° +p°.
i=1 7j=1 i=1 1<J 1<J
Substituting all the above expression in the initial formula for D(f), we get

D(f) = —2p* — 3¢ — 2(3¢° + p*) — 2q - 6 — 6¢° = —4p® — 274"
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(b) We agree that F is taken to be the splitting field of f in C. The roots of
D(f) in C are then given by 4(z; — 22)(21 — 23)(22 — 23) which are elements
of E since 21, 20,23 € F.

(c) By the previous point, E D Q(z1, A(f)), where A(f) = (21— 22)(21 — 23) (22 —
z3) is a square root of D(f). Hence [E : Q] is divisible by both [Q(z1) : Q]
and [Q(A(f)) : Q]. We know that [Q(z1) : Q] = deg(f) = 3, while [Q(A(f)) :
Q] = 2 because A(f)? = D(f) € Q and A(f) € Q by assumption. Hence
6|[£ : Q]. Since [E : Q] is also the cardinality of Gal(E/Q) which is a
subgroup of S5 (by looking at its action on the roots of f), we can conclude
that Gal(F/Q) = S.

(d) Suppose o € Gal(E/Q) switches z; and z. Then it must fix z3. We obtain

o(A(f)) = o((z1 — 22) (21 — 23)(22 — 23)) = (22 — 21)(22 — 23) (21 — 23) = —A(f),

so that A(f) € Q by definition of Gal(E/Q). Hence no such a ¢ can exist
if D(f) is a square in Q (because then we know that A(f) € Q). Still
3 =[Q(z) : Q] divides [E : Q] = Card(Gal(£/Q)) and since Gal(£/Q) can
be seen as a proper subgroup of S3 (not containing transpositions), the only
possibility is that Gal(E/Q) = As.

(e) By the mean value theorem we know that f has a root in R. If it has a
non-real root, then the complex conjugate of this root must also be a root,
since the coefficients of f are in Q and hence real, so that they are fixed by
complex conjugation. Moreover, we know that f has three distinct roots as
proved in a), so that the only two possibilities are that f has three real roots
or a real root and two conjugated non-real roots. Without loss of generality,
assume that z; € R. We distinguished the cases treated in parts ¢) and d)
above to check the given statement.

e Suppose that D(f) is a square in Q (so that in particular, D(f) > 0).
Then E = Q(z1) because [E : Q] = 3 by part d). Hence E C R, so that
all roots of f are real.

e Suppose that D(f) is not a square in Q. The argument used in ¢) shows
that Q(z1, A(f)) has degree 6 over Q, so that F = Q(z1,A(f)). The
roots of f are all real if and only if £ C R, which is then equivalent to
A(f) € R, which happens if and only if D(f) > 0.

2. Let f=X3+X?+2X + 2—77 € Q[X]. Construct a radical extension of QQ containing
the splitting field of f. [Hint: Look at Cardano’s formula from the first lecture]
Solution: First, we look at the image g of f under the isomorphism of rings
Q[X] — Q[Z] sending X ~— Z — 3, i.e., we substitute X with Z— % in f, in order



to get rid of the degree-2 term. We get

1\? 1\2 1 7
—(z-= 7 — = 29z -=)+—
(7-35) +(7-3) +2(7-3)
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5 1

=73+ 27Z— -,

T3 3

Notice that the roots of f and g in C are the same up to traslating by % € Q, so
that Sf(f) = Sf(g).

By Gauss’s Lemma, g is irreducible if and only if 373 + 57 — 1 is irreducible in
Z[Z], which is the case as can be checked by reducing modulo 2—the polynomial
73+ Z 41 € Fy[Z] having being seen to be irreducible in Assignment 15, Exercise
3. Hence g is irreducible and so it is separable and has three distinct roots in C.
We compute its discriminant (see Exercise 1) to get

5\° 1\* 581
D(fy=—4|=-) —27T|——= | =—=.
n==() - (5) -
In the first lecture, we saw that the roots of g are given by z = y 4+ u, for y and u
satisfying

3 3 —D(f)
U S (G Sk BT BN =10
_ 2 2 3 2 4.927

N T e Caa)

Since D(f) < 0, both y* and u® are real numbers and we write with the symbol of
the cube root their real cube root. Then y € {w/{/% + @ :j €4{0,£1}}. and

w € {wl /I — Y3l j e {0,4+1}}, where w =5 = 1 + Y3 Now we write the

roots of g by choosing the exponents for w in y and in u in the three possible ways
that grant uy = —p/3 € R. We obtain

\/ 1 /581 1 /581

Rig) = {5+ YO0 oL V8L L VIBL LT
6 54 6 54

7131+\/581+w31_ 581}

6 54 6 54 J



V581

Moreover, we observe that Q(1/# -+ YBLy — (¢ & — Y28 because the product

54
of the two cube roots is —p/3 € Q. Hence

St(f) = Sf(g) = Q(R(9)) C Q | iv/3,v/581, é - @

More precisely, defining

1 /581
Ko=Q. Ky = Ko(V3), K= K\(V581), Ks =Ky ([ o= ~5
we see that K3/Q is a radical extension containing Sf(f). This is because each
of the intermediate extensions K;/K;_; is pure as the added element satisfies a
minimal polynomial of the form X* —a for a € K;_; and k € Z,.

. Let k be a field of characteristic 2 and K/k a quadratic extension such that
Card(Gal(K/k)) = 2. Show that there exist 5 € K and a € k such that § is
aroot of X? — X +a € k[X] and K = k().

Solution: Let by € K ~\ k and consider its minimal polynomial f = X2 + sX +¢
over k. Then K = k(by).

Suppose that s = 0. Then b3 = t so that (X — by)? = X2 + b2 = X? +t and the
Galois group can map by only to itself, so that Card(Gal(K/k)) = 1, contradicting
our assumptions. Hence s # 0.

We look for b = \bg + 1 € K ~\ k with \, u € k such that b?> — b+ a = 0 for some
a € k, that is, such that b*> — b € k. We compute

B2 — b= (Abo + 11)2 — (Abo + 1) = A2b2 + Abg + p® — pu = N2(sbg + 1) + Aby + % —

and notice that the last quantity belongs to k if and only if A(As + 1) = 0. Since
b & k, we necessarily have A\ # 0, so that we need A = 1/s. This implies that
b := by/s has minimal polynomial X? — X + ¢/s* and generated K/k, as desired.

. Let G be a group acting on a set X with at least two elements. We say that the
action is doubly transitive if for each x1,xo, Y1,y € X with x1 # x9 and y; # yo
there exists ¢ € G such that g -z; = y; for « = 1,2. Show that the following
statements hold:

(a) S, acts doubly transitively on {1,...,n} for each n > 2.
(b) A, acts doubly transitively on {1,...,n} for each n > 4.

(c) For each n > 4 the group D,, does not act doubly transitively on the vertices
of an n-gon (see Assignment 8, Exercise 7).

b}



Solution:

(a)

As proved in Assignment 9, Exercise 8, the action of S, on {1,...,n} x
{1,...,n} has only two orbits: {(¢,7)} and {(,7) : ¢ # j}. This means that
each (i, j) can be mapped to each (7', j') for i # j and i’ # j' by a permutation
in S, that is, the action of S,, on {1,...,n} is doubly transitive.

Let x1,20,y1,92 € {1,...,n} with 1 # x5 and y; # y2. We reason on
different cases distinguished by the cardinality of {x1, z2, y1, ¥ }, which ranges
from 2 to 4 and find o € A,, sending z; — y;. Recall that a 3-cycle is a product
of two 2-cycles and as such it belongs to A,.

e Suppose that Card{z, x2, y1,y2} = 2, so that {z1, 22} = {y1, 12} If both
r; = y;, then 0 = id € A,, does the job. Else, 1 = y5 and x5 = y;. In
this second subcase n > 4, we can take u,v € {1,...,n} ~{x1, 22, y1, 92}
with u # v and choose 0 = (u v)(z1 y1) = (u v)(x2 ya).

e Suppose that Card{zy, s, y1,y2} = 3. Without loss of generality, we can
assume that either z; = y; or x1 = ys. In the first subcase, we want to
map x; — x1 and xy — yo and we know that x9 # yo. This can be done
by taking u € {1,...,n} \ {1, 22,92} and choosing o = (z2 y2 u) € A,.
In the second subcase, we want to map x, — y; and x5 — 21, which can
be done via 0 = (x9 1 y1) € A,.

e Suppose that Card{xy,z2,y1,y2} = 4. Then o = (21 y1)(z2 y2) € Ap
does the job.

Recall that D,, consists of n rotations (including the identity) and n axial
symmetries (reflections). Suppose that ¢ € D, fixes one vertex P. Then
o is either the identity or the reflection through the axis passing through
P. Hence, for a given P’ # P, o(P’) has only two possible images, one of
which is P’ itself, the other is another vertex P”. Since n > 4, we can take
P a vertex different from P, P’ and P” and see that there exist no o € D,
mapping P — P and P’ — P, so that the action is not doubly transitive.



