Solution 19

NORMALITY AND SEPARABILITY

1. Let K/k be a field extension and $f \in k[X]$. Prove that f is separable as a polynomial in k[X], then it is separable as a polynomial in K[X]. Does the converse hold?

Solution: Write $f = \prod_{i=1}^{r} f_i$ with $f_i \in k[X]$ irreducible polynomials. By definition of separability, each f_i has no repeated roots in its splitting field E_i . Hence, by Lemma seen in class $gcd_{k[X]}(f, f') = 1$, which by Assignment 16, Exercise 1a) is equivalent to saying that $gcd_{K[X]}(f, f') = 1$, which implies that f_i , seen as a polynomial in K[X], has no multiple roots. Since the decomposition $f = \prod_{i=1}^{r} f_i$ holds in K[X] as well and K[X] is a UFD, each irreducible factor g appearing in a decomposition of f in K[X] divides one of the f_i and since f_i has no multiple roots in its splitting field, the same holds for g (the roots of g being roots of f_i with smaller multiplicity). Hence f is separable as a polynomial in K[X] by definition.

The converse does not true. For example, consider the field $k = \mathbb{F}_p(t^p)$ and its algebraic extension $K = \mathbb{F}_p(t) = k(t)$. The polynomial $f := X^p - t^p \in k[X]$ splits completely in K[X] as $f = (X - t)^p$, so that it is separable as a polynomial in K[X] by definition. On the other hand, it is not a separable polynomial in k[X], because there it is irreducible and the root $t \in K$ of f is a multiple root. The fact that f is irreducible in k[X] can be seen by noticing that a factor g of f must be of the form $(X - t)^r$ (up to multiplying by a constant) for some $0 \leq r \leq p$ and noticing that $(X - t)^r$ has constant term t^r which belongs to k if and only if r = 0or r = p.

2. Let $f \in k[X]$ be a monic polynomial which splits and suppose that $\sigma \in \operatorname{Aut}(k)$ fixes each root of f. Prove that σ fixes all the coefficients of f. Solution: Since f is monic and splits in k[X], we can write $f = \prod_{i=1}^{r} (X - a_i)$ for

Solution. Since f is monic and spins in $\kappa[X]$, we can write $f = \prod_{i=1}^{\infty} (X - a_i)$ for $a_i \in k$ not necessarily distinct. The coefficients of f are then seen to be given by sums and products of the a_i 's and since σ fixes the a_i 's by assumption (as they are roots of f) and respects the field operations, then σ must fix all the coefficients of f.

Alternatively, one can define $\tilde{\sigma} : k[X] \longrightarrow k[X]$ to be the unique ring homomorphism such that $\tilde{\sigma}|_k = \sigma$ and $\tilde{\sigma}(X) = X$. Write $f = \prod_{i=1}^r (X - a_i) = \sum_{j=0}^r b_j X^j$ with $b_n = 1$. Then we see that

$$\tilde{\sigma}(f) = \tilde{\sigma}(\prod_{i=1}^{r} (X - a_i)) = \prod_{i=1}^{r} \tilde{\sigma}(X - a_i) = \prod_{i=1}^{r} (X - \sigma a_i) = \prod_{i=1}^{r} (X - a_i) = f,$$

so that

$$f = \tilde{\sigma}(f) = \tilde{\sigma}(\sum_{j=0}^r b_j X^j) = \sum_{j=0}^r \tilde{\sigma}(b_j X^j) = \sum_{j=0}^r \sigma(b_j) X^j$$

so that a comparison by coefficients gives $\sigma(b_i) = b_i$.

3. Let E/k be a splitting field of $f \in k[X]$ and consider an extension k' of k and the splitting field E' of f over k'. Show that each $\sigma \in \text{Gal}(E'/k')$ satisfies $\sigma(E) = E$ and that the resulting homomorphism

$$\operatorname{Gal}(E'/k') \longrightarrow \operatorname{Gal}(E/k)$$
$$\sigma \longmapsto \sigma|_E$$

is injective.

Solution: We know that $E = k(R(f)) \subset E' = k'(R(f))$. If $\sigma \in \text{Gal}(E'/k')$, then σ fixes k. Moreover, σ sends roots of f to roots of f, hence $\sigma(E) = \sigma(k(R(f))) \subset k(R(f)) = E$. This means that the map φ in the assignment is defined. It is clear that it is a homomorphism since restriction and composition of morphisms commute.

Let $\sigma \in \ker(\varphi)$. Then $\sigma \in \operatorname{Gal}(E'/k')$ must fix the whole E = k(R(f)). Hence σ fixes k' and R(f), resulting in σ fixing the whole k'(R(f)) = E', so that $\sigma = \operatorname{id}_{E'}$. Hence φ is injective, as desired.

4. Let E/k be a finite field extension. Show that E/k is normal if and only if every irreducible polynomial $f \in k[X]$ which has a root in E splits completely over E.

Solution: Since E is a finite field extension, we know that it is finitely generated and we can write $E = k(\alpha_1, \ldots, \alpha_k)$ for some $\alpha_j \in E$.

Suppose that each polynomial $f \in k[X]$ which has a root in E splits completely over E. In particular, each polynomial $\operatorname{irr}(\alpha_j, k)$ splits completely over E and hence so does $g = \prod_{j=1}^{r} \operatorname{irr}(\alpha_j, k)$. This implies that E contains the splitting field $\operatorname{Sf}(g)$ of g. But $\operatorname{Sf}(g)$ must contain the roots $\alpha_1, \ldots, \alpha_k$ of f, so that it must contain $k(\alpha_1, \ldots, \alpha_k) = E$. This lets us conclude that $E = \operatorname{Sf}(g)$ so that E/k is a normal extension.

Conversely, suppose that E = Sf(g) for some polynomial g and let $f \in k[X]$ be an irreducible polynomial with a root $\alpha \in E$. Let E' = Sf(fg) and $\beta \in E'$ a root of f. Since α and β are roots of the irreducible polynomial $f \in k[X]$, there is an isomorphism $\psi : k(\alpha) \longrightarrow k(\beta)$ sending $\alpha \mapsto \beta$ and fixing elements of k. This can be extended to a field automorphism φ of the algebraic closure \overline{k} of k, which must send E into E because E/k is normal and we can use the same argument used in the proof of Theorem II.26. Hence $\beta \in E$. By arbitrarity of β , we can conclude that E contains all roots of g as desired. 5. Show that $\operatorname{Aut}(\mathbb{R}) = {\operatorname{id}_{\mathbb{R}}}.$

Solution: Let $\sigma \in \operatorname{Aut}(\mathbb{R})$. Since σ respects the sum and $\sigma(1) = 1$, we notice that $\sigma|_{\mathbb{Z}} = \operatorname{id}_{\mathbb{Z}}$. Now let f = 1/q with $q \in \mathbb{Z} \setminus \{0\}$. We notice that $q \cdot \sigma(f) = \sigma(qf) = \sigma(1) = 1$, so that $\sigma(f) = 1/q = f$. This proves that σ must be the identity on \mathbb{Q} . Next, we prove that σ is a strictly increasing function. Let $x, y \in \mathbb{R}$ with x > y and write $y - x = z^2$ for $z \in \mathbb{R} \setminus \{0\}$. Then

$$\sigma(y) - \sigma(x) = \sigma(y - x) = \sigma(z^2) = \sigma(z)^2 > 0,$$

where $\sigma(z) \neq 0$ because $z \neq 0$ and σ is injective. Hence $\sigma(y) > \sigma(x)$.

Now we check that σ is continuous by looking at the preimage of an open interval I = (a, b) in \mathbb{R} . By bijectivity of σ we can write $a = \sigma(\alpha)$ and $b = \sigma(\beta)$ so that

$$\sigma^{-1}(I) = \{ x \in \mathbb{R} : \sigma(\alpha) < \sigma(x) < \sigma(\beta) \} = (\alpha, \beta)$$

which implies, by arbitrarity of the open interval I, that σ is continuous.

Finally, the two maps σ and $id_{\mathbb{R}}$ are continuous real functions coinciding on the dense subset \mathbb{Q} . This implies that they must coincide on the whole \mathbb{R} and by arbitrarity of σ we conclude that $Aut_{\mathbb{R}} = \{id_{\mathbb{R}}\}$.