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Solution 19
Normality and separability

1. Let K/k be a field extension and f ∈ k[X]. Prove that f is separable as a
polynomial in k[X], then it is separable as a polynomial in K[X]. Does the
converse hold?

Solution: Write f =
∏r

i fi with fi ∈ k[X] irreducible polynomials. By definition
of separability, each fi has no repeated roots in its splitting field Ei. Hence, by
Lemma seen in class gcdk[X](f, f

′) = 1, which by Assignment 16, Exercise 1a)
is equivalent to saying that gcdK[X](f, f

′) = 1, which implies that fi, seen as a
polynomial in K[X], has no multiple roots. Since the decomposition f =

∏r
i fi

holds in K[X] as well and K[X] is a UFD, each irreducible factor g appearing in a
decomposition of f in K[X] divides one of the fi and since fi has no multiple roots
in its splitting field, the same holds for g (the roots of g being roots of fi with
smaller multiplicity). Hence f is separable as a polynomial in K[X] by definition.

The converse does not true. For example, consider the field k = Fp(t
p) and its

algebraic extension K = Fp(t) = k(t). The polynomial f := Xp − tp ∈ k[X] splits
completely in K[X] as f = (X − t)p, so that it is separable as a polynomial in
K[X] by definition. On the other hand, it is not a separable polynomial in k[X],
because there it is irreducible and the root t ∈ K of f is a multiple root. The fact
that f is irreducible in k[X] can be seen by noticing that a factor g of f must be
of the form (X − t)r (up to multiplying by a constant) for some 0 6 r 6 p and
noticing that (X − t)r has constant term tr which belongs to k if and only if r = 0
or r = p.

2. Let f ∈ k[X] be a monic polynomial which splits and suppose that σ ∈ Aut(k)
fixes each root of f . Prove that σ fixes all the coefficients of f .

Solution: Since f is monic and splits in k[X], we can write f =
∏r

i=1(X − ai) for
ai ∈ k not necessarily distinct. The coefficients of f are then seen to be given by
sums and products of the ai’s and since σ fixes the ai’s by assumption (as they are
roots of f) and respects the field operations, then σ must fix all the coefficients of
f .

Alternatively, one can define σ̃ : k[X] −→ k[X] to be the unique ring homomor-
phism such that σ̃|k = σ and σ̃(X) = X. Write f =

∏r
i=1(X − ai) =

∑r
j=0 bjX

j

with bn = 1. Then we see that

σ̃(f) = σ̃(
r∏

i=1

(X − ai)) =
r∏

i=1

σ̃(X − ai) =
r∏

i=1

(X − σai) =
r∏

i=1

(X − ai) = f,

1



so that

f = σ̃(f) = σ̃(
r∑

j=0

bjX
j) =

r∑
j=0

σ̃(bjX
j) =

r∑
j=0

σ(bj)X
j

so that a comparison by coefficients gives σ(bj) = bj.

3. Let E/k be a splitting field of f ∈ k[X] and consider an extension k′ of k and the
splitting field E ′ of f over k′. Show that each σ ∈ Gal(E ′/k′) satisfies σ(E) = E
and that the resulting homomorphism

Gal(E ′/k′) −→ Gal(E/k)

σ 7−→ σ|E

is injective.

Solution: We know that E = k(R(f)) ⊂ E ′ = k′(R(f)). If σ ∈ Gal(E ′/k′), then
σ fixes k. Moreover, σ sends roots of f to roots of f , hence σ(E) = σ(k(R(f))) ⊂
k(R(f)) = E. This means that the map ϕ in the assignment is defined. It is
clear that it is a homomorphism since restriction and composition of morphisms
commute.

Let σ ∈ ker(ϕ). Then σ ∈ Gal(E ′/k′) must fix the whole E = k(R(f)). Hence σ
fixes k′ and R(f), resulting in σ fixing the whole k′(R(f)) = E ′, so that σ = idE′ .
Hence ϕ is injective, as desired.

4. Let E/k be a finite field extension. Show that E/k is normal if and only if every
irreducible polynomial f ∈ k[X] which has a root in E splits completely over E.

Solution: Since E is a finite field extension, we know that it is finitely generated
and we can write E = k(α1, . . . , αk) for some αj ∈ E.

Suppose that each polynomial f ∈ k[X] which has a root in E splits completely
over E. In particular, each polynomial irr(αj, k) splits completely over E and
hence so does g =

∏r
j=1 irr(αj, k). This implies that E contains the splitting field

Sf(g) of g. But Sf(g) must contain the roots α1, . . . , αk of f , so that it must contain
k(α1, . . . , αk) = E. This lets us conclude that E = Sf(g) so that E/k is a normal
extension.

Conversely, suppose that E = Sf(g) for some polynomial g and let f ∈ k[X] be
an irreducible polynomial with a root α ∈ E. Let E ′ = Sf(fg) and β ∈ E ′ a root
of f . Since α and β are roots of the irreducible polynomial f ∈ k[X], there is an
isomorphism ψ : k(α) −→ k(β) sending α 7→ β and fixing elements of k. This can
be extended to a field automorphism ϕ of the algebraic closure k of k, which must
send E into E because E/k is normal and we can use the same argument used in
the proof of Theorem II.26. Hence β ∈ E. By arbitrarity of β, we can conclude
that E contains all roots of g as desired.
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5. Show that Aut(R) = {idR}.
Solution: Let σ ∈ Aut(R). Since σ respects the sum and σ(1) = 1, we notice that
σ|Z = idZ. Now let f = 1/q with q ∈ Z r {0}. We notice that q · σ(f) = σ(qf) =
σ(1) = 1, so that σ(f) = 1/q = f . This proves that σ must be the identity on Q.

Next, we prove that σ is a strictly increasing function. Let x, y ∈ R with x > y
and write y − x = z2 for z ∈ Rr {0}. Then

σ(y)− σ(x) = σ(y − x) = σ(z2) = σ(z)2 > 0,

where σ(z) 6= 0 because z 6= 0 and σ is injective. Hence σ(y) > σ(x).

Now we check that σ is continuous by looking at the preimage of an open interval
I = (a, b) in R. By bijectivity of σ we can write a = σ(α) and b = σ(β) so that

σ−1(I) = {x ∈ R : σ(α) < σ(x) < σ(β)} = (α, β)

which implies, by arbitrarity of the open interval I, that σ is continuous.

Finally, the two maps σ and idR are continuous real functions coinciding on the
dense subset Q. This implies that they must coincide on the whole R and by
arbitrarity of σ we conclude that AutR = {idR}.
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