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Solution 19

NORMALITY AND SEPARABILITY

1. Let K/k be a field extension and f € k[X]. Prove that f is separable as a
polynomial in k[X], then it is separable as a polynomial in K[X]. Does the
converse hold?

Solution: Write f = [ f; with f; € k[X] irreducible polynomials. By definition
of separability, each f; has no repeated roots in its splitting field E;. Hence, by
Lemma seen in class gedyy(f, f') = 1, which by Assignment 16, Exercise la)
is equivalent to saying that gedg y(f, f) = 1, which implies that f;, seen as a
polynomial in K[X], has no multiple roots. Since the decomposition f = [[; f
holds in K[X] as well and K[X] is a UFD, each irreducible factor g appearing in a
decomposition of f in K[X] divides one of the f; and since f; has no multiple roots
in its splitting field, the same holds for g (the roots of g being roots of f; with
smaller multiplicity). Hence f is separable as a polynomial in K[X] by definition.

The converse does not true. For example, consider the field & = F,(¢?) and its
algebraic extension K =1IF,(t) = k(t). The polynomial f := X? —t? € k[X] splits
completely in K[X] as f = (X — ¢)?, so that it is separable as a polynomial in
K[X] by definition. On the other hand, it is not a separable polynomial in k[X],
because there it is irreducible and the root ¢t € K of f is a multiple root. The fact
that f is irreducible in k[X] can be seen by noticing that a factor g of f must be
of the form (X — ¢)” (up to multiplying by a constant) for some 0 < r < p and
noticing that (X —¢)" has constant term ¢" which belongs to k if and only if r =0
or r =p.

2. Let f € k[X] be a monic polynomial which splits and suppose that o € Aut(k)
fixes each root of f. Prove that o fixes all the coefficients of f.
Solution: Since f is monic and splits in k[X], we can write f = [[;_,(X — a;) for
a; € k not necessarily distinct. The coefficients of f are then seen to be given by
sums and products of the a;’s and since o fixes the a;’s by assumption (as they are
roots of f) and respects the field operations, then o must fix all the coefficients of
f.
Alternatively, one can define ¢ : k[X]| — k[X] to be the unique ring homomor-
phism such that 7, = 0 and ¢(X) = X. Write f = [[_ (X —a;) = > 7, b; X7
with b, = 1. Then we see that
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so that

so that a comparison by coefficients gives o(b;) = b;.

. Let E/k be a splitting field of f € k[X] and consider an extension &' of k£ and the
splitting field £’ of f over k’. Show that each o € Gal(E'/k’) satisfies o(E) = F
and that the resulting homomorphism

Gal(E'/k') — Gal(E/k)
or—0o|g

is injective.

Solution: We know that E = k(R(f)) C E' = K'(R(f)). If 0 € Gal(E'/kK), then
o fixes k. Moreover, o sends roots of f to roots of f, hence o(E) = o(k(R(f))) C
kE(R(f)) = E. This means that the map ¢ in the assignment is defined. It is

clear that it is a homomorphism since restriction and composition of morphisms
commute.

Let o € ker(y). Then o € Gal(E'/k’) must fix the whole E = k(R(f)). Hence o
fixes k" and R(f), resulting in o fixing the whole ¥'(R(f)) = E’, so that ¢ = idg.
Hence ¢ is injective, as desired.

. Let E/k be a finite field extension. Show that E/k is normal if and only if every
irreducible polynomial f € k[X]| which has a root in E splits completely over E.

Solution: Since E is a finite field extension, we know that it is finitely generated
and we can write £ = k(ay, ..., ) for some o € E.

Suppose that each polynomial f € k[X] which has a root in E splits completely
over E. In particular, each polynomial irr(a;, k) splits completely over E and
hence so does g = [[}_, irr(a;, k). This implies that £ contains the splitting field
Sf(g) of g. But Sf(¢g) must contain the roots ay, ..., a4 of f, so that it must contain
k(aq,...,ar) = E. This lets us conclude that E = Sf(g) so that F/k is a normal
extension.

Conversely, suppose that E = Sf(g) for some polynomial g and let f € k[X] be
an irreducible polynomial with a root a € E. Let E' = Sf(fg) and 5 € E’ a root
of f. Since a and f are roots of the irreducible polynomial f € k[X], there is an
isomorphism v : k(o) — k(B) sending o — [ and fixing elements of k. This can
be extended to a field automorphism ¢ of the algebraic closure k of k, which must
send E into E because E/k is normal and we can use the same argument used in
the proof of Theorem I1.26. Hence § € E. By arbitrarity of 3, we can conclude
that F contains all roots of ¢ as desired.
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5. Show that Aut(R) = {idr}.

Solution: Let o € Aut(R). Since o respects the sum and o(1) = 1, we notice that
olz =1idz. Now let f =1/q with ¢ € Z ~ {0}. We notice that ¢-o(f) = o(¢f) =
o(1) =1, so that o(f) = 1/q¢ = f. This proves that o must be the identity on Q.

Next, we prove that o is a strictly increasing function. Let z,y € R with x > y
and write y — z = 2% for 2 € R~ {0}. Then
o(y) —o(x) = oy —x) = 0(z*) = 0(2)* > 0,

where o(z) # 0 because z # 0 and o is injective. Hence o(y) > o(z).

Now we check that ¢ is continuous by looking at the preimage of an open interval
I = (a,b) in R. By bijectivity of o we can write a = o(«) and b = o(/3) so that

ol (I)={reR:0(a) <o) <o)} =(a,f)

which implies, by arbitrarity of the open interval I, that ¢ is continuous.

Finally, the two maps ¢ and idg are continuous real functions coinciding on the
dense subset Q. This implies that they must coincide on the whole R and by
arbitrarity of o we conclude that Autg = {idr}.



