Solution 19

Normality and separability

1. Let K / k be a field extension and $f \in k[X]$. Prove that f is separable as a polynomial in $k[X]$, then it is separable as a polynomial in $K[X]$. Does the converse hold?
Solution: Write $f=\prod_{i}^{r} f_{i}$ with $f_{i} \in k[X]$ irreducible polynomials. By definition of separability, each f_{i} has no repeated roots in its splitting field E_{i}. Hence, by Lemma seen in class $\operatorname{gcd}_{k[X]}\left(f, f^{\prime}\right)=1$, which by Assignment 16, Exercise 1a) is equivalent to saying that $\operatorname{gcd}_{K[X]}\left(f, f^{\prime}\right)=1$, which implies that f_{i}, seen as a polynomial in $K[X]$, has no multiple roots. Since the decomposition $f=\prod_{i}^{r} f_{i}$ holds in $K[X]$ as well and $K[X]$ is a UFD, each irreducible factor g appearing in a decomposition of f in $K[X]$ divides one of the f_{i} and since f_{i} has no multiple roots in its splitting field, the same holds for g (the roots of g being roots of f_{i} with smaller multiplicity). Hence f is separable as a polynomial in $K[X]$ by definition. The converse does not true. For example, consider the field $k=\mathbb{F}_{p}\left(t^{p}\right)$ and its algebraic extension $K=\mathbb{F}_{p}(t)=k(t)$. The polynomial $f:=X^{p}-t^{p} \in k[X]$ splits completely in $K[X]$ as $f=(X-t)^{p}$, so that it is separable as a polynomial in $K[X]$ by definition. On the other hand, it is not a separable polynomial in $k[X]$, because there it is irreducible and the root $t \in K$ of f is a multiple root. The fact that f is irreducible in $k[X]$ can be seen by noticing that a factor g of f must be of the form $(X-t)^{r}$ (up to multiplying by a constant) for some $0 \leqslant r \leqslant p$ and noticing that $(X-t)^{r}$ has constant term t^{r} which belongs to k if and only if $r=0$ or $r=p$.
2. Let $f \in k[X]$ be a monic polynomial which splits and suppose that $\sigma \in \operatorname{Aut}(k)$ fixes each root of f. Prove that σ fixes all the coefficients of f.
Solution: Since f is monic and splits in $k[X]$, we can write $f=\prod_{i=1}^{r}\left(X-a_{i}\right)$ for $a_{i} \in k$ not necessarily distinct. The coefficients of f are then seen to be given by sums and products of the a_{i} 's and since σ fixes the a_{i} 's by assumption (as they are roots of f) and respects the field operations, then σ must fix all the coefficients of f.
Alternatively, one can define $\tilde{\sigma}: k[X] \longrightarrow k[X]$ to be the unique ring homomorphism such that $\left.\tilde{\sigma}\right|_{k}=\sigma$ and $\tilde{\sigma}(X)=X$. Write $f=\prod_{i=1}^{r}\left(X-a_{i}\right)=\sum_{j=0}^{r} b_{j} X^{j}$ with $b_{n}=1$. Then we see that

$$
\tilde{\sigma}(f)=\tilde{\sigma}\left(\prod_{i=1}^{r}\left(X-a_{i}\right)\right)=\prod_{i=1}^{r} \tilde{\sigma}\left(X-a_{i}\right)=\prod_{i=1}^{r}\left(X-\sigma a_{i}\right)=\prod_{i=1}^{r}\left(X-a_{i}\right)=f
$$

so that

$$
f=\tilde{\sigma}(f)=\tilde{\sigma}\left(\sum_{j=0}^{r} b_{j} X^{j}\right)=\sum_{j=0}^{r} \tilde{\sigma}\left(b_{j} X^{j}\right)=\sum_{j=0}^{r} \sigma\left(b_{j}\right) X^{j}
$$

so that a comparison by coefficients gives $\sigma\left(b_{j}\right)=b_{j}$.
3. Let E / k be a splitting field of $f \in k[X]$ and consider an extension k^{\prime} of k and the splitting field E^{\prime} of f over k^{\prime}. Show that each $\sigma \in \operatorname{Gal}\left(E^{\prime} / k^{\prime}\right)$ satisfies $\sigma(E)=E$ and that the resulting homomorphism

$$
\begin{aligned}
\operatorname{Gal}\left(E^{\prime} / k^{\prime}\right) & \longrightarrow \operatorname{Gal}(E / k) \\
\sigma & \left.\longmapsto \sigma\right|_{E}
\end{aligned}
$$

is injective.
Solution: We know that $E=k(R(f)) \subset E^{\prime}=k^{\prime}(R(f))$. If $\sigma \in \operatorname{Gal}\left(E^{\prime} / k^{\prime}\right)$, then σ fixes k. Moreover, σ sends roots of f to roots of f, hence $\sigma(E)=\sigma(k(R(f))) \subset$ $k(R(f))=E$. This means that the map φ in the assignment is defined. It is clear that it is a homomorphism since restriction and composition of morphisms commute.
Let $\sigma \in \operatorname{ker}(\varphi)$. Then $\sigma \in \operatorname{Gal}\left(E^{\prime} / k^{\prime}\right)$ must fix the whole $E=k(R(f))$. Hence σ fixes k^{\prime} and $R(f)$, resulting in σ fixing the whole $k^{\prime}(R(f))=E^{\prime}$, so that $\sigma=\mathrm{id}_{E^{\prime}}$. Hence φ is injective, as desired.
4. Let E / k be a finite field extension. Show that E / k is normal if and only if every irreducible polynomial $f \in k[X]$ which has a root in E splits completely over E.
Solution: Since E is a finite field extension, we know that it is finitely generated and we can write $E=k\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ for some $\alpha_{j} \in E$.
Suppose that each polynomial $f \in k[X]$ which has a root in E splits completely over E. In particular, each polynomial $\operatorname{irr}\left(\alpha_{j}, k\right)$ splits completely over E and hence so does $g=\prod_{j=1}^{r} \operatorname{irr}\left(\alpha_{j}, k\right)$. This implies that E contains the splitting field $\operatorname{Sf}(g)$ of g. But $\operatorname{Sf}(g)$ must contain the roots $\alpha_{1}, \ldots, \alpha_{k}$ of f, so that it must contain $k\left(\alpha_{1}, \ldots, \alpha_{k}\right)=E$. This lets us conclude that $E=\operatorname{Sf}(g)$ so that E / k is a normal extension.
Conversely, suppose that $E=\operatorname{Sf}(g)$ for some polynomial g and let $f \in k[X]$ be an irreducible polynomial with a root $\alpha \in E$. Let $E^{\prime}=\operatorname{Sf}(f g)$ and $\beta \in E^{\prime}$ a root of f. Since α and β are roots of the irreducible polynomial $f \in k[X]$, there is an isomorphism $\psi: k(\alpha) \longrightarrow k(\beta)$ sending $\alpha \mapsto \beta$ and fixing elements of k. This can be extended to a field automorphism φ of the algebraic closure \bar{k} of k, which must send E into E because E / k is normal and we can use the same argument used in the proof of Theorem II.26. Hence $\beta \in E$. By arbitrarity of β, we can conclude that E contains all roots of g as desired.
5. Show that $\operatorname{Aut}(\mathbb{R})=\left\{\mathrm{id}_{\mathbb{R}}\right\}$.

Solution: Let $\sigma \in \operatorname{Aut}(\mathbb{R})$. Since σ respects the sum and $\sigma(1)=1$, we notice that $\left.\sigma\right|_{\mathbb{Z}}=\mathrm{id}_{\mathbb{Z}}$. Now let $f=1 / q$ with $q \in \mathbb{Z} \backslash\{0\}$. We notice that $q \cdot \sigma(f)=\sigma(q f)=$ $\sigma(1)=1$, so that $\sigma(f)=1 / q=f$. This proves that σ must be the identity on \mathbb{Q}.
Next, we prove that σ is a strictly increasing function. Let $x, y \in \mathbb{R}$ with $x>y$ and write $y-x=z^{2}$ for $z \in \mathbb{R} \backslash\{0\}$. Then

$$
\sigma(y)-\sigma(x)=\sigma(y-x)=\sigma\left(z^{2}\right)=\sigma(z)^{2}>0
$$

where $\sigma(z) \neq 0$ because $z \neq 0$ and σ is injective. Hence $\sigma(y)>\sigma(x)$.
Now we check that σ is continuous by looking at the preimage of an open interval $I=(a, b)$ in \mathbb{R}. By bijectivity of σ we can write $a=\sigma(\alpha)$ and $b=\sigma(\beta)$ so that

$$
\sigma^{-1}(I)=\{x \in \mathbb{R}: \sigma(\alpha)<\sigma(x)<\sigma(\beta)\}=(\alpha, \beta)
$$

which implies, by arbitrarity of the open interval I, that σ is continuous.
Finally, the two maps σ and $\mathrm{id}_{\mathbb{R}}$ are continuous real functions coinciding on the dense subset \mathbb{Q}. This implies that they must coincide on the whole \mathbb{R} and by arbitrarity of σ we conclude that $\mathrm{Aut}_{\mathbb{R}}=\left\{\mathrm{id}_{\mathbb{R}}\right\}$.

