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Prof. Marc Burger .
Solution 20

SOLVABILITY BY RADICALS. RECAPITULATION.

1. Prove that the groups Sy, S3 and S are solvable.

Solution: The group S, is commutative, hence solvable by definition, because we
can consider the chain of normal subgroups 1 <1.5;.

The group S3 contains the normal subgroup As of index 2. Hence the quotient
group S3/Asz has cardinality 2 so that it is cyclic and hence abelian. Since Aj is
abelian, too (it is cyclic of cardinality 3), S3 is solvable, by considering the chain
of normal subgroups 1 <1 A3 <1 S3.

The group S, contains the normal subgroup A4 of index 2, so that S;/A4 is com-
mutative. In Ay, which has 4!/2 = 12 elements, there is a subgroup of 4 elements
Ve = {id, (12)(34),(13)(24),(12)(34)}. Its elements are indeed of order 2, so
that they coincide with their inverses, and the product of two non-trivial elements
in V, coincides with the remaining non-trivial element, proving that it is indeed a
subgroup isomorphic to the Klein four-group (i.e., Z/2Z x Z/2Z). Since V, con-
tains all permutations of cyclic type 1+1+41+1 and 2+ 2, it is a normal subgroup
of Sy and hence of A;. Moreover, A;/V, has three elements, so that it is an abelian
group. Finally, V} is abelian since it is isomorphic to the Klein four-group and
this lets us conclude that S, is solvable. We have indeed obtained the sequence of
subgroups 1 <V, < Ay <1 S4.

2. Let k be a field and n = 2d a positive even integer. Let f = >7"  a; X7 € k[X]
be a monic polynomial of degree n without multiple roots and suppose that f has
no root in k. Suppose moreover that f is palindromic, that is, a; = a,_; for each

j€{0,...,d}. Let E = Sf().

(a) Prove that z — 2 is a well-defined bijection of R(f).
(b) Deduce that Card(Gal(E/k)) divides 2%d!

Solution:

(a) Let € R(f), so that 0 = f(z) = >_"_;a;27. We know that x # 0 because
f has no root in k, so that z admits an inverse 1/z in E. We deduce that

n n

~ 1 1 -1 -1

_ - n—j _ I _

f(1/x) = Zanxj =2t =0 ) gt = xnf(x) =0,
Jj=0 j=0 j=0

so that z + 2 is a well-defined map R(f) — R(f). Since this map is its

own inverse, it is a bijection.



(b) By assumption, f has n = 2d distinct roots. Since the map z — 1/x is an

involution (i.e., it coincides with its inverse) whose fixed points are +1 € k
and those cannot be roots of f by assumption, the set R(f) is the union of
d orbits of 2 elements under the action of Z/2Z on it generated by x %
This means that R(f) = {z1, 27", 79,25, ..., 24,2} for some z,... 74 in
k distinct and such that z; # % for each ¢ and j.

The Galois group Gal(E/k) embeds into Sy via its action on R(f). We
write the embedding Gal(E/k) — Sy explicitly by defining x;,4 := x; ' for
i € {l,...,d} and send o € GalE/k to 0y € Sy such that og(i) = j for
i,j € {1,...,2d} if and only if o(x;) = z;. Moreover, for ¢ € Gal(E/k) we
know that o(x; ') = (o(z;))~", so that for each i € {1,...,d} there exists a
unique j € {1,...,d} such that o({z;, z;'}) = {z;,2;'}.

In terms of the embedding into Sy, this translates by saying that the image
of Gal(E/k) in Sy, is in the subset

Wy={o€Ssy:areSy:Vie{l,...,d},o{i,i+d}) ={7(i),7(i) + d}},

that is, the subsets of permutations of {1,...,2d} respecting the partition
{1,d 4+ 1},{2,d + 2},...,{d,2d}. Since this property is stable under com-
position and inversion, the subset Wy is actually a subgroup of Ss;. Hence
the image of Gal(E/k) under its embedding into Sy, is a subgroup of W, so
that Card(Gal(E/k)) divides Card(W,). For each o € Wy, the 7 € Sy (per-
muting the subsets {i,7 + d}) appearing in the definition of Wy is uniquely
determined. For each 7 € Sy, there are 2¢ permutations ¢ determining that
7, because for each ¢ € {1,...,d} we have two ways to map {i,7 + d} onto
{7(7),7(i) + d}. Hence we can conclude that

Card(Gal(E/k))|Card(Wy) = d! - 2¢,

as desired.

3. For each of the following polynomials, determine the Galois group of its splitting

field:

(
(b
(c

a) X*4+2X3+ X2+ 2X +1 € Q[X] [Hint: Exercise 2]

X5 +2X* - 2 e QX]
X'+ X +1eF[X]

(d) X' —t € F3(t)[X]

Solution:

(a) The polynomial f = X*+2X3+ X? +2X + 1 € Q[X] has no root in Q. We

compute its roots in C by using Exercise 1(a). If x € C is a root of f, then so



is 271, For x # +1, we know that 7! # x. But f(&1) # 0 because it is an
odd integer. Hence the roots of f in C are given by a1, a; ", az,a; " for some
eventually equal a1, a; € C. Since (X —a;)(X — aj_l) = X%—(a; +aj_1)X +1
for j = 1,2, we can define «o; := —(a; + aj_l) which lets us write down the
decomposition

X' 12X 4+ X2 12X +1=f = (X?+ o X + D)(X? + X +1).
Comparing the coefficients in this equality we obtain the system of equations

Oé1+062:2
041(12+2:1

Hence a; and ay are the two roots of the equation (in @) o? —2a — 1 = 0,
that is,

ag=1+V1+1=1+V2

This implies that the only decomposition of f into monic polynomials. The
roots of f are the roots of the two equations 2 + (14 v/2)z + 1 = 0, that is,

R(f) ={-1—=vV2+£\/-14+2V2, -1+ V2+i\/1+2V2}.

There are four distinct roots (two real and two non-real ones) and we can
apply Exercise 2(b) which tells us that | Gal(E£/Q)| divides 2% - 2! = 8, where
E = Sf(f). Moreover, we see that

E=Q(R(f)) > Qi,\/~1+2v2)

and since i € Q(v/ —1 4 2v/2) we know that

[E:Q]=[E:Qi,\/-1+2v2)]-2-[Q(\/~1+2v2): Q).

We claim that v/ —1 + 2v/2 has degree 4 over Q, so that by the above formula
8|[£ : Q] and since [E : Q]|8 as well, we deduce that [E : Q] = 8.

In order to prove the claim we just used, notice that v/2 € Qv -1+ 2\/5),
so that

[Q(V—1+2v2): Q] = [Q(\/ -1 +2v2) : Q(V2)][Q(V2) : Q] =2-2 =4,

because —1+42+/2 is not a square in Q(v/2) (which can be proved by noticing
that its norm over Q is N(—1+2v2) = (=1 +2v2)(-1-2/2)=1-8=7
which is not a square, see Assignment 12, Exercise 7; alternatively, one can
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prove directly that the equality (a + \/§b)2 = —1 4 2v/2 cannot hold for
a,b e Q).
By the proof given to Exercise 2, this means that Gal(E/Q), seen as a sub-

group of Sy, is precisely the subgroup W5 of permutations respecting the
partition {1,2,3,4} = {1,3} U {2,4}. This is given by

Wy = {id, (13)(24), (12)(34), (14)(23), (1234), (1432), (13), (24)},

which by numbering the vertices of a square counterclockwise from 1 to 4
can be seen to be isomorphic to Dy, the dihedral group on 4 elements (see
Assignment 8, Exercise 7).

The polynomial f = X° + %X 4 % € Q[X] is irreducible if and only if the
associated primitive polynomial 4 -21f =4-21X°%+5-21X* -5 -4 € Z[X]
is irreducible in Z[X], which is the case by Eisenstein’s Lemma (for p = 5).
The derivative of the associated real function z — f(x) is f'(x) = 5z* + 5a?,
which is positive for x < —1 and x > 0, negative for —1 < z < 0 and zero
on —1 and 0. Hence —1 is a local maximum while 0 is a local minimum. We
compute the values of f on those stationary points:

5 3 1 5 1 5

f( ) +4 21 4 21>4 20 0
5
f(O)——ﬁ<0.

This shows us that f has three real roots: one in (—oo, —1), one in (—1,0)
and (0,+00). We are therefore in position of applying Theorem I1.20 and
conclude that Gal(Sf(f)/Q) = Ss.

The polynomial X* + X + 1 € Fo[X] is irreducible in Fo[X], as we found out
in Assignment 15, Exercise 3. Let 2 € Fy be a root of f. Then the other
roots of f are powers of x, as shown in Exercise 2, Assignment 13, so that
Fy(x) = Sf(f). The same equality can be obtained by noticing that Fy(x) is
a finite field of 2* elements so that it is the splitting field of X6 — X € Fy[X]
as seen in class in the characterization of finite fields, so that being normal it
must contains all roots of f by Assignment 19, Exercise 4. Hence

Cal(Sf(f)/Fy) = Gal(Fy4/Fy) = Z/AZ
by Corollary I1.19 (Week 16).

Let u € F3(t) be a root of f = X8 —¢. Then u®" =t and
(X—u)gl:((X—u)3)27:(X3—u3)27:---:X81—u81:Xsl—t.

Hence u is the only root of f in F3(t) so that Sf(f) = F3(¢)(u) (in particular,
the polynomial and hence its splitting field are not separable). Since a F3(t)-
automorphism of F3(¢)(u) is uniquely determined by the image of u which in

turn needs to be a root of f, we conclude that | Gal(Sf(f)/Fs(t))| = {id}.
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4. Let k be a field.

(a)
(b)

Prove that £ is an extension of a field ko, called prime field, given by kg = F,
if char(k) = p > 0 and ky = Q if char(k) = 0.

Prove that any field homomorphism restricts to the identity on the prime
fields.

Solution:

(a)

The characteristic of the field k£ can be defined as the non-negative generator
of the kernel of the unique ring homomorphism ¢ : Z — k.

If char(k) > 0, then it is a prime number p and by the first homomorphism
theorem ¢ induces an injection ¢ : F, := Z/pZ — k and ko coincides with
the additive subgroup of k generated by 1.

If char(k) = 0, then ¢ is an injective map and since Q is the field of fractions
of Z, the inclusion ¢ extends to an inclusion of Q insider k.

If 0 : k — (is a field homomorphism, then the composition of ring ho-

momorphisms Z —% k %% ¢ must coincide with the unique homomorphism
we © Z — L. Moreover 6 is necessarily injective (because the image of
r € k* =k~ {0} has inverse 0(z~!), hence it cannot be zero). Hence

ker(pg) = {m € Z : pr.(m) € ker(8)} = {m € Z : pr(m) = 0} = ker(¢px)

so that k and ¢ have the same characteristic.

If the two fields have characteristic p > 0, then they contain the prime field
F, as images of ¢, and ¢, and those prime fields are mapped ”identically”
because ¢, = 0py.

If the two fields have characteristic 0, then # maps each integer m-1; to m-1,.
The inclusion ¢y : Z — k extends to an inclusion @, : QQ — £ by sending
m/n — pr(m)er(n)~! for m,n € Z with n # 0. Similarly for ¢, extending
to ®g: Q — £. In order to conclude, it is enough to prove that @y, = 6 o i,
so that @ is the "identity” on the prime fields Q seen as images of @, and @y.
This is done by using the fact that ¢, = 6py: for all m,n € Z with n # 0,

(0 0 Gx)(m/n) = 0(Be(m/n)) = 0(pe(m)pe(n) )
= (Ope)(m) - (0p0)(n) ™" = @o(m)pe(n) ™" = Ze(m/n).

5. We say that a field k is perfect if every algebraic field extension of k is separable.

(a)
(b)

Prove that a field k is perfect if and only if every polynomial f € k[X] is
separable.

Show that fields of characteristic zero are perfect.



(c)
(d)

Suppose that char(k) = p > 0. Prove that k is perfect if and only if the
Frobenius homomorphism ¢ : kK — k sending x — 2P is surjective.

Deduce that finite fields are perfect.

Solution:

()

Let k be a perfect field and fy € k[X] an irreducible polynomial. Let € k
be a root of fy. Then k(x) is a field extension of k and by assumption it is
separable. Hence x is a separable element, meaning that irr(z; k) = fy is a
separable polynomial. Now let f € k[X]| be an arbitrary polynomial. Every
irreducible factor of f is separable by arbitrarity of fy in the initial argument,
which implies that f is separable by definition.

Conversely, assume that every polynomial in k[X] is separable and let ¢/k be
an algebraic field extension. For every o € ¢, the minimal polynomial irr(«, k)
exists because ¢/k is algebraic; it is a separable polynomial by assumption,
meaning that « is separable. Hence ¢/k is a separable field extension.

By Corollary 11.10 (Week 16), we know that every irreducible polynomial in
k[X] has no multiple root. This means that every irreducible polynomial in
k[X] is separable. Then, for every f € k[X], each irreducible factor of f is
separable, so that f is separable as well.

Suppose that k is a perfect field and let us prove that each y € k has a p-th
root in k. Since k is perfect, the polynomial f = X? —y € k[X] must be
separable. For z € k a root of f, we have a factorization

f=(X—ay.

Hence z is the only root of f in k and a factor of f in k[X] has no multiple
roots in k if and only if it is a linear factor. As each irreducible factor of
f in k[X] must have no multiple root, the only possibility is that f splits
completely in k[X]. In particular, x € k.

Conversely, assume that the Frobenius map ¢ : k — k is surjective and
let us prove that every irreducible polynomial f in k[X] is separable, which
is enough to prove that k is perfect as noticed in part (a). Suppose that
f € k[X] is irreducible and has multiple roots. Then ged(f, f) # 1 by
Lemma I1.9 (Week 16). Since f is irreducible, ged(f, f’) must be divisible
by f. But ged(f, f') divides f’ of degree smaller than f, so that the only
possibility is that ged(f, f’) = 0, which can hold only if f' = 0. This is the
case if and only if f € k[X?], because the coefficients of degree not divisible
by p do not vanish when we take the formal derivative of f. As ¢ is surjective,
every coefficient of f is a p-th power of an element in &, so that we can write

F =S e = (z b) |
k=0 k=0



a proper factorization of f in k[X], which is a contradiction to the assumption
that f is irreducible. Hence f has no multiple roots.

(d) Let k = F,n be a finite field of characteristic p. The Frobenius homomorphism
¢ is a F,-field automorphism of F,». It is injective because ker(yp) = 0 since
fields are integral domains. By Assignment 15, Exercise 1, ¢ is a F,-linear
map between vector spaces of same finite dimension, which implies that it is
a bijection and in particular a surjective map. By part (c), k[X] is perfect.

6. Let k be a finite field and consider a finite field extension k(«, 5)/k. Suppose that
k(o) Nk(B) = k. Prove that k(a, 8) = k(a + B).

Solution: Let ¢ = card(k) be a power of a prime p. We write k = IF, and we know
that char(k) = p. Fix an algebraic closure k. Then, as seen in Algebra I, for each
power ¢' of ¢ there exists a unique subfield of k containing ¢* elements, it consists
of those elements « € % such that o4’ = a. The proof of Assignment 13, Exercise
1(b) generalizes to ¢ and tells us that Fy« C Fy if and only if s|t.

Let n,m € N be such that k(o) = Fy» and k() = Fym. Here n is the minimal
positive integer h such that a¢" = «, because otherwise k(a) would be contained
in a strictly smaller subfield of F». Since k = k(a) N k(B) is the smallest subfield
of k contained in both F,» and Fym, we deduce that ged(m,n) = 1. Then p divides
either m or n, without loss of generality, assume that p { n. Moreover, k(a, ) is
the smallest subfield of k containing both F,» and Fym, so that k(a, 8) = Fymn.

We write k(a4 ) = F,e. This means that
of +57 = (a+ /)" =a+p,

implying that

t

af —a=—(B7 =) € kla)Nk(B) = k.

Write a? = a+ X for A € [F, and repeatedly raising to the ¢'-th power, we deduce
inductively that

t

o’ =a+ph=a.

This means that n|tp and since p { n we obtain that n|t, so that k(a + 5) = F
contains k(«), so that a € k(a+ ). This implies that 5 = (a4 ) —a € k(a+5),
as well. Hence k(a, ) C k(o + 8). The other inclusion is obvious and we can
conclude that k(«, ) = k(a + f).



