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Prof. Marc Burger

Solution 20
Solvability by Radicals. Recapitulation.

1. Prove that the groups S2, S3 and S4 are solvable.

Solution: The group S2 is commutative, hence solvable by definition, because we
can consider the chain of normal subgroups 1 C S2.

The group S3 contains the normal subgroup A3 of index 2. Hence the quotient
group S3/A3 has cardinality 2 so that it is cyclic and hence abelian. Since A3 is
abelian, too (it is cyclic of cardinality 3), S3 is solvable, by considering the chain
of normal subgroups 1 C A3 C S3.

The group S4 contains the normal subgroup A4 of index 2, so that S4/A4 is com-
mutative. In A4, which has 4!/2 = 12 elements, there is a subgroup of 4 elements
V4 = {id, (1 2)(3 4), (1 3)(2 4), (1 2)(3 4)}. Its elements are indeed of order 2, so
that they coincide with their inverses, and the product of two non-trivial elements
in V4 coincides with the remaining non-trivial element, proving that it is indeed a
subgroup isomorphic to the Klein four-group (i.e., Z/2Z × Z/2Z). Since V4 con-
tains all permutations of cyclic type 1+1+1+1 and 2+2, it is a normal subgroup
of S4 and hence of A4. Moreover, A4/V4 has three elements, so that it is an abelian
group. Finally, V4 is abelian since it is isomorphic to the Klein four-group and
this lets us conclude that S4 is solvable. We have indeed obtained the sequence of
subgroups 1 C V4 C A4 C S4.

2. Let k be a field and n = 2d a positive even integer. Let f =
∑n

j=0 ajX
j ∈ k[X]

be a monic polynomial of degree n without multiple roots and suppose that f has
no root in k. Suppose moreover that f is palindromic, that is, aj = an−j for each
j ∈ {0, . . . , d}. Let E = Sf(f).

(a) Prove that x 7→ 1
x

is a well-defined bijection of R(f).

(b) Deduce that Card(Gal(E/k)) divides 2dd!

Solution:

(a) Let x ∈ R(f), so that 0 = f(x) =
∑n

j=0 ajx
j. We know that x 6= 0 because

f has no root in k, so that x admits an inverse 1/x in E. We deduce that

f(1/x) =
n∑
j=0

an
1

xj
=

1

xn

n∑
j=0

anx
n−j =

1

xn

n∑
j=0

an−jx
n−j =

1

xn
f(x) = 0,

so that x 7→ 1
x

is a well-defined map R(f) −→ R(f). Since this map is its
own inverse, it is a bijection.
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(b) By assumption, f has n = 2d distinct roots. Since the map x 7→ 1/x is an
involution (i.e., it coincides with its inverse) whose fixed points are ±1 ∈ k
and those cannot be roots of f by assumption, the set R(f) is the union of
d orbits of 2 elements under the action of Z/2Z on it generated by x 7→ 1

x
.

This means that R(f) = {x1, x−11 , x2, x
−1
2 , . . . , xd, x

−1
d } for some x1, . . . , xd in

k distinct and such that xi 6= 1
xj

for each i and j.

The Galois group Gal(E/k) embeds into S2d via its action on R(f). We
write the embedding Gal(E/k) ↪→ S2d explicitly by defining xi+d := x−1i for
i ∈ {1, . . . , d} and send σ ∈ GalE/k to σ0 ∈ S2d such that σ0(i) = j for
i, j ∈ {1, . . . , 2d} if and only if σ(xi) = xj. Moreover, for σ ∈ Gal(E/k) we
know that σ(x−1i ) = (σ(xi))

−1, so that for each i ∈ {1, . . . , d} there exists a
unique j ∈ {1, . . . , d} such that σ({xi, x−1i }) = {xj, x−1j }.
In terms of the embedding into S2d this translates by saying that the image
of Gal(E/k) in S2d is in the subset

Wd := {σ ∈ S2d : ∃τ ∈ Sd : ∀i ∈ {1, . . . , d}, σ({i, i+ d}) = {τ(i), τ(i) + d}},

that is, the subsets of permutations of {1, . . . , 2d} respecting the partition
{1, d + 1}, {2, d + 2}, . . . , {d, 2d}. Since this property is stable under com-
position and inversion, the subset Wd is actually a subgroup of S2d. Hence
the image of Gal(E/k) under its embedding into S2d is a subgroup of Wd, so
that Card(Gal(E/k)) divides Card(Wd). For each σ ∈ Wd, the τ ∈ Sd (per-
muting the subsets {i, i + d}) appearing in the definition of Wd is uniquely
determined. For each τ ∈ Sd, there are 2d permutations σ determining that
τ , because for each i ∈ {1, . . . , d} we have two ways to map {i, i + d} onto
{τ(i), τ(i) + d}. Hence we can conclude that

Card(Gal(E/k))|Card(Wd) = d! · 2d,

as desired.

3. For each of the following polynomials, determine the Galois group of its splitting
field:

(a) X4 + 2X3 +X2 + 2X + 1 ∈ Q[X] [Hint: Exercise 2]

(b) X5 + 5
4
X4 − 5

21
∈ Q[X]

(c) X4 +X + 1 ∈ F2[X]

(d) X81 − t ∈ F3(t)[X]

Solution:

(a) The polynomial f = X4 + 2X3 +X2 + 2X + 1 ∈ Q[X] has no root in Q. We
compute its roots in C by using Exercise 1(a). If x ∈ C is a root of f , then so
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is x−1. For x 6= ±1, we know that x−1 6= x. But f(±1) 6= 0 because it is an
odd integer. Hence the roots of f in C are given by a1, a

−1
1 , a2, a

−1
2 for some

eventually equal a1, a2 ∈ C. Since (X−aj)(X−a−1j ) = X2− (aj +a−1j )X+ 1

for j = 1, 2, we can define αj := −(aj + a−1j ) which lets us write down the
decomposition

X4 + 2X3 +X2 + 2X + 1 = f = (X2 + α1X + 1)(X2 + α2X + 1).

Comparing the coefficients in this equality we obtain the system of equations{
α1 + α2 = 2
α1α2 + 2 = 1

Hence α1 and α2 are the two roots of the equation (in α) α2 − 2α − 1 = 0,
that is,

α1,2 = 1±
√

1 + 1 = 1±
√

2.

This implies that the only decomposition of f into monic polynomials. The
roots of f are the roots of the two equations x2 + (1±

√
2)x+ 1 = 0, that is,

R(f) = {−1−
√

2±
√
−1 + 2

√
2,−1 +

√
2± i

√
1 + 2

√
2}.

There are four distinct roots (two real and two non-real ones) and we can
apply Exercise 2(b) which tells us that |Gal(E/Q)| divides 22 · 2! = 8, where
E = Sf(f). Moreover, we see that

E = Q(R(f)) ⊃ Q(i,

√
−1 + 2

√
2)

and since i 6∈ Q(
√
−1 + 2

√
2) we know that

[E : Q] = [E : Q(i,

√
−1 + 2

√
2)] · 2 · [Q(

√
−1 + 2

√
2) : Q].

We claim that
√
−1 + 2

√
2 has degree 4 over Q, so that by the above formula

8|[E : Q] and since [E : Q]|8 as well, we deduce that [E : Q] = 8.

In order to prove the claim we just used, notice that
√

2 ∈ Q(
√
−1 + 2

√
2),

so that

[Q(

√
−1 + 2

√
2) : Q] = [Q(

√
−1 + 2

√
2) : Q(

√
2)][Q(

√
2) : Q] = 2 · 2 = 4,

because −1+2
√

2 is not a square in Q(
√

2) (which can be proved by noticing
that its norm over Q is N(−1 + 2

√
2) = (−1 + 2

√
2)(−1− 2

√
2) = 1− 8 = 7

which is not a square, see Assignment 12, Exercise 7; alternatively, one can
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prove directly that the equality (a +
√

2b)2 = −1 + 2
√

2 cannot hold for
a, b ∈ Q).

By the proof given to Exercise 2, this means that Gal(E/Q), seen as a sub-
group of S4, is precisely the subgroup W2 of permutations respecting the
partition {1, 2, 3, 4} = {1, 3} ∪ {2, 4}. This is given by

W2 = {id, (1 3)(2 4), (1 2)(3 4), (1 4)(2 3), (1 2 3 4), (1 4 3 2), (1 3), (2 4)},

which by numbering the vertices of a square counterclockwise from 1 to 4
can be seen to be isomorphic to D4, the dihedral group on 4 elements (see
Assignment 8, Exercise 7).

(b) The polynomial f = X5 + 5
4
X4 − 5

21
∈ Q[X] is irreducible if and only if the

associated primitive polynomial 4 · 21f = 4 · 21X5 + 5 · 21X4 − 5 · 4 ∈ Z[X]
is irreducible in Z[X], which is the case by Eisenstein’s Lemma (for p = 5).

The derivative of the associated real function x 7→ f(x) is f ′(x) = 5x4 + 5x3,
which is positive for x < −1 and x > 0, negative for −1 < x < 0 and zero
on −1 and 0. Hence −1 is a local maximum while 0 is a local minimum. We
compute the values of f on those stationary points:

f(−1) = −1 +
5

4
− 5

21
=

1

4
− 5

21
>

1

4
− 5

20
= 0

f(0) = − 5

21
< 0.

This shows us that f has three real roots: one in (−∞,−1), one in (−1, 0)
and (0,+∞). We are therefore in position of applying Theorem II.20 and
conclude that Gal(Sf(f)/Q) ∼= S5.

(c) The polynomial X4 +X + 1 ∈ F2[X] is irreducible in F2[X], as we found out
in Assignment 15, Exercise 3. Let x ∈ F2 be a root of f . Then the other
roots of f are powers of x, as shown in Exercise 2, Assignment 13, so that
F2(x) = Sf(f). The same equality can be obtained by noticing that F2(x) is
a finite field of 24 elements so that it is the splitting field of X16−X ∈ F2[X]
as seen in class in the characterization of finite fields, so that being normal it
must contains all roots of f by Assignment 19, Exercise 4. Hence

Gal(Sf(f)/F2) = Gal(F16/F2) = Z/4Z

by Corollary II.19 (Week 16).

(d) Let u ∈ F3(t) be a root of f = X81 − t. Then u81 = t and

(X − u)81 = ((X − u)3)27 = (X3 − u3)27 = · · · = X81 − u81 = X81 − t.

Hence u is the only root of f in F3(t) so that Sf(f) = F3(t)(u) (in particular,
the polynomial and hence its splitting field are not separable). Since a F3(t)-
automorphism of F3(t)(u) is uniquely determined by the image of u which in
turn needs to be a root of f , we conclude that |Gal(Sf(f)/F3(t))| = {id}.
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4. Let k be a field.

(a) Prove that k is an extension of a field k0, called prime field, given by k0 = Fp
if char(k) = p > 0 and k0 = Q if char(k) = 0.

(b) Prove that any field homomorphism restricts to the identity on the prime
fields.

Solution:

(a) The characteristic of the field k can be defined as the non-negative generator
of the kernel of the unique ring homomorphism ϕ : Z −→ k.

If char(k) > 0, then it is a prime number p and by the first homomorphism
theorem ϕ induces an injection ϕ : Fp := Z/pZ −→ k and k0 coincides with
the additive subgroup of k generated by 1k.

If char(k) = 0, then ϕ is an injective map and since Q is the field of fractions
of Z, the inclusion ϕ extends to an inclusion of Q insider k.

(b) If θ : k −→ ` is a field homomorphism, then the composition of ring ho-

momorphisms Z ϕk−→ k
θ−→ ` must coincide with the unique homomorphism

ϕ` : Z −→ `. Moreover θ is necessarily injective (because the image of
x ∈ k× = k r {0} has inverse θ(x−1), hence it cannot be zero). Hence

ker(ϕ`) = {m ∈ Z : ϕk(m) ∈ ker(θ)} = {m ∈ Z : ϕk(m) = 0} = ker(ϕk)

so that k and ` have the same characteristic.

If the two fields have characteristic p > 0, then they contain the prime field
Fp as images of ϕk and ϕ` and those prime fields are mapped ”identically”
because ϕ` = θϕk.

If the two fields have characteristic 0, then θ maps each integer m ·1k to m ·1`.
The inclusion ϕk : Z −→ k extends to an inclusion ϕk : Q −→ k by sending
m/n 7→ ϕk(m)ϕk(n)−1 for m,n ∈ Z with n 6= 0. Similarly for ϕ` extending
to ϕ` : Q −→ `. In order to conclude, it is enough to prove that ϕ` = θ ◦ ϕk,
so that θ is the ”identity” on the prime fields Q seen as images of ϕk and ϕ`.
This is done by using the fact that ϕ` = θϕk: for all m,n ∈ Z with n 6= 0,

(θ ◦ ϕk)(m/n) = θ(ϕ`(m/n)) = θ(ϕ`(m)ϕ`(n)−1)

= (θϕ`)(m) · (θϕ`)(n)−1 = ϕ`(m)ϕ`(n)−1 = ϕ`(m/n).

5. We say that a field k is perfect if every algebraic field extension of k is separable.

(a) Prove that a field k is perfect if and only if every polynomial f ∈ k[X] is
separable.

(b) Show that fields of characteristic zero are perfect.
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(c) Suppose that char(k) = p > 0. Prove that k is perfect if and only if the
Frobenius homomorphism ϕ : k −→ k sending x 7→ xp is surjective.

(d) Deduce that finite fields are perfect.

Solution:

(a) Let k be a perfect field and f0 ∈ k[X] an irreducible polynomial. Let x ∈ k
be a root of f0. Then k(x) is a field extension of k and by assumption it is
separable. Hence x is a separable element, meaning that irr(x; k) = f0 is a
separable polynomial. Now let f ∈ k[X] be an arbitrary polynomial. Every
irreducible factor of f is separable by arbitrarity of f0 in the initial argument,
which implies that f is separable by definition.

Conversely, assume that every polynomial in k[X] is separable and let `/k be
an algebraic field extension. For every α ∈ `, the minimal polynomial irr(α, k)
exists because `/k is algebraic; it is a separable polynomial by assumption,
meaning that α is separable. Hence `/k is a separable field extension.

(b) By Corollary II.10 (Week 16), we know that every irreducible polynomial in
k[X] has no multiple root. This means that every irreducible polynomial in
k[X] is separable. Then, for every f ∈ k[X], each irreducible factor of f is
separable, so that f is separable as well.

(c) Suppose that k is a perfect field and let us prove that each y ∈ k has a p-th
root in k. Since k is perfect, the polynomial f = Xp − y ∈ k[X] must be
separable. For x ∈ k a root of f , we have a factorization

f = (X − x)p.

Hence x is the only root of f in k and a factor of f in k[X] has no multiple
roots in k if and only if it is a linear factor. As each irreducible factor of
f in k[X] must have no multiple root, the only possibility is that f splits
completely in k[X]. In particular, x ∈ k.

Conversely, assume that the Frobenius map ϕ : k −→ k is surjective and
let us prove that every irreducible polynomial f in k[X] is separable, which
is enough to prove that k is perfect as noticed in part (a). Suppose that
f ∈ k[X] is irreducible and has multiple roots. Then gcd(f, f ′) 6= 1 by
Lemma II.9 (Week 16). Since f is irreducible, gcd(f, f ′) must be divisible
by f . But gcd(f, f ′) divides f ′ of degree smaller than f , so that the only
possibility is that gcd(f, f ′) = 0, which can hold only if f ′ = 0. This is the
case if and only if f ∈ k[Xp], because the coefficients of degree not divisible
by p do not vanish when we take the formal derivative of f . As ϕ is surjective,
every coefficient of f is a p-th power of an element in k, so that we can write

f =
n∑
k=0

(bk)
pxpk =

(
n∑
k=0

bkx
k

)p

,
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a proper factorization of f in k[X], which is a contradiction to the assumption
that f is irreducible. Hence f has no multiple roots.

(d) Let k = Fpn be a finite field of characteristic p. The Frobenius homomorphism
ϕ is a Fp-field automorphism of Fpn . It is injective because ker(ϕ) = 0 since
fields are integral domains. By Assignment 15, Exercise 1, ϕ is a Fp-linear
map between vector spaces of same finite dimension, which implies that it is
a bijection and in particular a surjective map. By part (c), k[X] is perfect.

6. Let k be a finite field and consider a finite field extension k(α, β)/k. Suppose that
k(α) ∩ k(β) = k. Prove that k(α, β) = k(α + β).

Solution: Let q = card(k) be a power of a prime p. We write k = Fq and we know
that char(k) = p. Fix an algebraic closure k. Then, as seen in Algebra I, for each
power qt of q there exists a unique subfield of k containing qt elements, it consists
of those elements α ∈ k such that αq

t
= α. The proof of Assignment 13, Exercise

1(b) generalizes to q and tells us that Fqs ⊂ Fqt if and only if s|t.
Let n,m ∈ N be such that k(α) = Fqn and k(β) = Fqm . Here n is the minimal

positive integer h such that αq
h

= α, because otherwise k(α) would be contained
in a strictly smaller subfield of Fqn . Since k = k(α) ∩ k(β) is the smallest subfield
of k contained in both Fqn and Fqm , we deduce that gcd(m,n) = 1. Then p divides
either m or n, without loss of generality, assume that p - n. Moreover, k(α, β) is
the smallest subfield of k containing both Fqn and Fqm , so that k(α, β) = Fqmn .

We write k(α + β) = Fqt . This means that

αq
t

+ βq
t

= (α + β)q
t

= α + β,

implying that

αq
t − α = −(βq

t − β) ∈ k(α) ∩ k(β) = k.

Write αq
t

= α+λ for λ ∈ Fq and repeatedly raising to the qt-th power, we deduce
inductively that

αq
tp

= α + pλ = α.

This means that n|tp and since p - n we obtain that n|t, so that k(α + β) = Fqt
contains k(α), so that α ∈ k(α+β). This implies that β = (α+β)−α ∈ k(α+β),
as well. Hence k(α, β) ⊂ k(α + β). The other inclusion is obvious and we can
conclude that k(α, β) = k(α + β).
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