## Solution 20

## Solvability by Radicals. Recapitulation.

1. Prove that the groups $S_{2}, S_{3}$ and $S_{4}$ are solvable.

Solution: The group $S_{2}$ is commutative, hence solvable by definition, because we can consider the chain of normal subgroups $1 \triangleleft S_{2}$.
The group $S_{3}$ contains the normal subgroup $A_{3}$ of index 2. Hence the quotient group $S_{3} / A_{3}$ has cardinality 2 so that it is cyclic and hence abelian. Since $A_{3}$ is abelian, too (it is cyclic of cardinality 3 ), $S_{3}$ is solvable, by considering the chain of normal subgroups $1 \triangleleft A_{3} \triangleleft S_{3}$.
The group $S_{4}$ contains the normal subgroup $A_{4}$ of index 2 , so that $S_{4} / A_{4}$ is commutative. In $A_{4}$, which has $4!/ 2=12$ elements, there is a subgroup of 4 elements $V_{4}=\{\mathrm{id},(12)(34),(13)(24),(12)(34)\}$. Its elements are indeed of order 2 , so that they coincide with their inverses, and the product of two non-trivial elements in $V_{4}$ coincides with the remaining non-trivial element, proving that it is indeed a subgroup isomorphic to the Klein four-group (i.e., $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ ). Since $V_{4}$ contains all permutations of cyclic type $1+1+1+1$ and $2+2$, it is a normal subgroup of $S_{4}$ and hence of $A_{4}$. Moreover, $A_{4} / V_{4}$ has three elements, so that it is an abelian group. Finally, $V_{4}$ is abelian since it is isomorphic to the Klein four-group and this lets us conclude that $S_{4}$ is solvable. We have indeed obtained the sequence of subgroups $1 \triangleleft V_{4} \triangleleft A_{4} \triangleleft S_{4}$.
2. Let $k$ be a field and $n=2 d$ a positive even integer. Let $f=\sum_{j=0}^{n} a_{j} X^{j} \in k[X]$ be a monic polynomial of degree $n$ without multiple roots and suppose that $f$ has no root in $k$. Suppose moreover that $f$ is palindromic, that is, $a_{j}=a_{n-j}$ for each $j \in\{0, \ldots, d\}$. Let $E=\operatorname{Sf}(f)$.
(a) Prove that $x \mapsto \frac{1}{x}$ is a well-defined bijection of $R(f)$.
(b) Deduce that $\operatorname{Card}(\operatorname{Gal}(E / k))$ divides $2^{d} d$ !

## Solution:

(a) Let $x \in R(f)$, so that $0=f(x)=\sum_{j=0}^{n} a_{j} x^{j}$. We know that $x \neq 0$ because $f$ has no root in $k$, so that $x$ admits an inverse $1 / x$ in $E$. We deduce that

$$
f(1 / x)=\sum_{j=0}^{n} a_{n} \frac{1}{x^{j}}=\frac{1}{x^{n}} \sum_{j=0}^{n} a_{n} x^{n-j}=\frac{1}{x^{n}} \sum_{j=0}^{n} a_{n-j} x^{n-j}=\frac{1}{x^{n}} f(x)=0,
$$

so that $x \mapsto \frac{1}{x}$ is a well-defined map $R(f) \longrightarrow R(f)$. Since this map is its own inverse, it is a bijection.
(b) By assumption, $f$ has $n=2 d$ distinct roots. Since the map $x \mapsto 1 / x$ is an involution (i.e., it coincides with its inverse) whose fixed points are $\pm 1 \in k$ and those cannot be roots of $f$ by assumption, the set $R(f)$ is the union of $d$ orbits of 2 elements under the action of $\mathbb{Z} / 2 \mathbb{Z}$ on it generated by $x \mapsto \frac{1}{x}$. This means that $R(f)=\left\{x_{1}, x_{1}^{-1}, x_{2}, x_{2}^{-1}, \ldots, x_{d}, x_{d}^{-1}\right\}$ for some $x_{1}, \ldots, x_{d}$ in $\bar{k}$ distinct and such that $x_{i} \neq \frac{1}{x_{j}}$ for each $i$ and $j$.
The Galois group $\operatorname{Gal}(E / k)$ embeds into $S_{2 d}$ via its action on $R(f)$. We write the embedding $\operatorname{Gal}(E / k) \hookrightarrow S_{2 d}$ explicitly by defining $x_{i+d}:=x_{i}^{-1}$ for $i \in\{1, \ldots, d\}$ and send $\sigma \in \operatorname{Gal} E / k$ to $\sigma_{0} \in S_{2 d}$ such that $\sigma_{0}(i)=j$ for $i, j \in\{1, \ldots, 2 d\}$ if and only if $\sigma\left(x_{i}\right)=x_{j}$. Moreover, for $\sigma \in \operatorname{Gal}(E / k)$ we know that $\sigma\left(x_{i}^{-1}\right)=\left(\sigma\left(x_{i}\right)\right)^{-1}$, so that for each $i \in\{1, \ldots, d\}$ there exists a unique $j \in\{1, \ldots, d\}$ such that $\sigma\left(\left\{x_{i}, x_{i}^{-1}\right\}\right)=\left\{x_{j}, x_{j}^{-1}\right\}$.
In terms of the embedding into $S_{2 d}$ this translates by saying that the image of $\operatorname{Gal}(E / k)$ in $S_{2 d}$ is in the subset

$$
W_{d}:=\left\{\sigma \in S_{2 d}: \exists \tau \in S_{d}: \forall i \in\{1, \ldots, d\}, \sigma(\{i, i+d\})=\{\tau(i), \tau(i)+d\}\right\},
$$

that is, the subsets of permutations of $\{1, \ldots, 2 d\}$ respecting the partition $\{1, d+1\},\{2, d+2\}, \ldots,\{d, 2 d\}$. Since this property is stable under composition and inversion, the subset $W_{d}$ is actually a subgroup of $S_{2 d}$. Hence the image of $\operatorname{Gal}(E / k)$ under its embedding into $S_{2 d}$ is a subgroup of $W_{d}$, so that $\operatorname{Card}(\operatorname{Gal}(E / k))$ divides $\operatorname{Card}\left(W_{d}\right)$. For each $\sigma \in W_{d}$, the $\tau \in S_{d}$ (permuting the subsets $\{i, i+d\}$ ) appearing in the definition of $W_{d}$ is uniquely determined. For each $\tau \in S_{d}$, there are $2^{d}$ permutations $\sigma$ determining that $\tau$, because for each $i \in\{1, \ldots, d\}$ we have two ways to map $\{i, i+d\}$ onto $\{\tau(i), \tau(i)+d\}$. Hence we can conclude that

$$
\operatorname{Card}(\operatorname{Gal}(E / k)) \mid \operatorname{Card}\left(W_{d}\right)=d!\cdot 2^{d},
$$

as desired.
3. For each of the following polynomials, determine the Galois group of its splitting field:
(a) $X^{4}+2 X^{3}+X^{2}+2 X+1 \in \mathbb{Q}[X]$ [Hint: Exercise 2]
(b) $X^{5}+\frac{5}{4} X^{4}-\frac{5}{21} \in \mathbb{Q}[X]$
(c) $X^{4}+X+1 \in \mathbb{F}_{2}[X]$
(d) $X^{81}-t \in \mathbb{F}_{3}(t)[X]$

## Solution:

(a) The polynomial $f=X^{4}+2 X^{3}+X^{2}+2 X+1 \in \mathbb{Q}[X]$ has no root in $\mathbb{Q}$. We compute its roots in $\mathbb{C}$ by using Exercise 1 (a). If $x \in \mathbb{C}$ is a root of $f$, then so
is $x^{-1}$. For $x \neq \pm 1$, we know that $x^{-1} \neq x$. But $f( \pm 1) \neq 0$ because it is an odd integer. Hence the roots of $f$ in $\mathbb{C}$ are given by $a_{1}, a_{1}^{-1}, a_{2}, a_{2}^{-1}$ for some eventually equal $a_{1}, a_{2} \in \mathbb{C}$. Since $\left(X-a_{j}\right)\left(X-a_{j}^{-1}\right)=X^{2}-\left(a_{j}+a_{j}^{-1}\right) X+1$ for $j=1,2$, we can define $\alpha_{j}:=-\left(a_{j}+a_{j}^{-1}\right)$ which lets us write down the decomposition

$$
X^{4}+2 X^{3}+X^{2}+2 X+1=f=\left(X^{2}+\alpha_{1} X+1\right)\left(X^{2}+\alpha_{2} X+1\right)
$$

Comparing the coefficients in this equality we obtain the system of equations

$$
\left\{\begin{array}{l}
\alpha_{1}+\alpha_{2}=2 \\
\alpha_{1} \alpha_{2}+2=1
\end{array}\right.
$$

Hence $\alpha_{1}$ and $\alpha_{2}$ are the two roots of the equation (in $\alpha$ ) $\alpha^{2}-2 \alpha-1=0$, that is,

$$
\alpha_{1,2}=1 \pm \sqrt{1+1}=1 \pm \sqrt{2} .
$$

This implies that the only decomposition of $f$ into monic polynomials. The roots of $f$ are the roots of the two equations $x^{2}+(1 \pm \sqrt{2}) x+1=0$, that is,

$$
R(f)=\{-1-\sqrt{2} \pm \sqrt{-1+2 \sqrt{2}},-1+\sqrt{2} \pm i \sqrt{1+2 \sqrt{2}}\}
$$

There are four distinct roots (two real and two non-real ones) and we can apply Exercise 2(b) which tells us that $|\operatorname{Gal}(E / \mathbb{Q})|$ divides $2^{2} \cdot 2!=8$, where $E=\operatorname{Sf}(f)$. Moreover, we see that

$$
E=\mathbb{Q}(R(f)) \supset \mathbb{Q}(i, \sqrt{-1+2 \sqrt{2}})
$$

and since $i \notin \mathbb{Q}(\sqrt{-1+2 \sqrt{2}})$ we know that

$$
[E: \mathbb{Q}]=[E: \mathbb{Q}(i, \sqrt{-1+2 \sqrt{2}})] \cdot 2 \cdot[\mathbb{Q}(\sqrt{-1+2 \sqrt{2}}): \mathbb{Q}] .
$$

We claim that $\sqrt{-1+2 \sqrt{2}}$ has degree 4 over $\mathbb{Q}$, so that by the above formula $8 \mid[E: \mathbb{Q}]$ and since $[E: \mathbb{Q}] \mid 8$ as well, we deduce that $[E: \mathbb{Q}]=8$.
In order to prove the claim we just used, notice that $\sqrt{2} \in \mathbb{Q}(\sqrt{-1+2 \sqrt{2}})$, so that

$$
[\mathbb{Q}(\sqrt{-1+2 \sqrt{2}}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{-1+2 \sqrt{2}}): \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2 \cdot 2=4,
$$

because $-1+2 \sqrt{2}$ is not a square in $\mathbb{Q}(\sqrt{2})$ (which can be proved by noticing that its norm over $\mathbb{Q}$ is $N(-1+2 \sqrt{2})=(-1+2 \sqrt{2})(-1-2 \sqrt{2})=1-8=7$ which is not a square, see Assignment 12, Exercise 7; alternatively, one can
prove directly that the equality $(a+\sqrt{2} b)^{2}=-1+2 \sqrt{2}$ cannot hold for $a, b \in \mathbb{Q})$.
By the proof given to Exercise 2, this means that $\operatorname{Gal}(E / \mathbb{Q})$, seen as a subgroup of $S_{4}$, is precisely the subgroup $W_{2}$ of permutations respecting the partition $\{1,2,3,4\}=\{1,3\} \cup\{2,4\}$. This is given by

$$
W_{2}=\{\mathrm{id},(13)(24),(12)(34),(14)(23),(1234),(1432),(13),(24)\}
$$

which by numbering the vertices of a square counterclockwise from 1 to 4 can be seen to be isomorphic to $D_{4}$, the dihedral group on 4 elements (see Assignment 8, Exercise 7).
(b) The polynomial $f=X^{5}+\frac{5}{4} X^{4}-\frac{5}{21} \in \mathbb{Q}[X]$ is irreducible if and only if the associated primitive polynomial $4 \cdot 21 f=4 \cdot 21 X^{5}+5 \cdot 21 X^{4}-5 \cdot 4 \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Z}[X]$, which is the case by Eisenstein's Lemma (for $p=5$ ). The derivative of the associated real function $x \mapsto f(x)$ is $f^{\prime}(x)=5 x^{4}+5 x^{3}$, which is positive for $x<-1$ and $x>0$, negative for $-1<x<0$ and zero on -1 and 0 . Hence -1 is a local maximum while 0 is a local minimum. We compute the values of $f$ on those stationary points:

$$
\begin{aligned}
f(-1) & =-1+\frac{5}{4}-\frac{5}{21}=\frac{1}{4}-\frac{5}{21}>\frac{1}{4}-\frac{5}{20}=0 \\
f(0) & =-\frac{5}{21}<0 .
\end{aligned}
$$

This shows us that $f$ has three real roots: one in $(-\infty,-1)$, one in $(-1,0)$ and $(0,+\infty)$. We are therefore in position of applying Theorem II. 20 and conclude that $\operatorname{Gal}(\operatorname{Sf}(f) / \mathbb{Q}) \cong S_{5}$.
(c) The polynomial $X^{4}+X+1 \in \mathbb{F}_{2}[X]$ is irreducible in $\mathbb{F}_{2}[X]$, as we found out in Assignment 15, Exercise 3. Let $x \in \overline{\mathbb{F}_{2}}$ be a root of $f$. Then the other roots of $f$ are powers of $x$, as shown in Exercise 2, Assignment 13, so that $\mathbb{F}_{2}(x)=\operatorname{Sf}(f)$. The same equality can be obtained by noticing that $\mathbb{F}_{2}(x)$ is a finite field of $2^{4}$ elements so that it is the splitting field of $X^{16}-X \in \mathbb{F}_{2}[X]$ as seen in class in the characterization of finite fields, so that being normal it must contains all roots of $f$ by Assignment 19, Exercise 4. Hence

$$
\operatorname{Gal}\left(\operatorname{Sf}(f) / \mathbb{F}_{2}\right)=\operatorname{Gal}\left(\mathbb{F}_{16} / \mathbb{F}_{2}\right)=\mathbb{Z} / 4 \mathbb{Z}
$$

by Corollary II. 19 (Week 16).
(d) Let $u \in \overline{\mathbb{F}_{3}(t)}$ be a root of $f=X^{81}-t$. Then $u^{81}=t$ and

$$
(X-u)^{81}=\left((X-u)^{3}\right)^{27}=\left(X^{3}-u^{3}\right)^{27}=\cdots=X^{81}-u^{81}=X^{81}-t
$$

Hence $u$ is the only root of $f$ in $\overline{\mathbb{F}_{3}(t)}$ so that $\operatorname{Sf}(f)=\mathbb{F}_{3}(t)(u)$ (in particular, the polynomial and hence its splitting field are not separable). Since a $\mathbb{F}_{3}(t)$ automorphism of $\mathbb{F}_{3}(t)(u)$ is uniquely determined by the image of $u$ which in turn needs to be a root of $f$, we conclude that $\left|\operatorname{Gal}\left(\operatorname{Sf}(f) / \mathbb{F}_{3}(t)\right)\right|=\{\mathrm{id}\}$.
4. Let $k$ be a field.
(a) Prove that $k$ is an extension of a field $k_{0}$, called prime field, given by $k_{0}=\mathbb{F}_{p}$ if $\operatorname{char}(k)=p>0$ and $k_{0}=\mathbb{Q}$ if $\operatorname{char}(k)=0$.
(b) Prove that any field homomorphism restricts to the identity on the prime fields.

## Solution:

(a) The characteristic of the field $k$ can be defined as the non-negative generator of the kernel of the unique ring homomorphism $\varphi: \mathbb{Z} \longrightarrow k$.
If $\operatorname{char}(k)>0$, then it is a prime number $p$ and by the first homomorphism theorem $\varphi$ induces an injection $\varphi: \mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z} \longrightarrow k$ and $k_{0}$ coincides with the additive subgroup of $k$ generated by $1_{k}$.
If $\operatorname{char}(k)=0$, then $\varphi$ is an injective map and since $\mathbb{Q}$ is the field of fractions of $\mathbb{Z}$, the inclusion $\varphi$ extends to an inclusion of $\mathbb{Q}$ insider $k$.
(b) If $\theta: k \longrightarrow \ell$ is a field homomorphism, then the composition of ring homomorphisms $\mathbb{Z} \xrightarrow{\varphi_{k}} k \xrightarrow{\theta} \ell$ must coincide with the unique homomorphism $\varphi_{\ell}: \mathbb{Z} \longrightarrow \ell$. Moreover $\theta$ is necessarily injective (because the image of $x \in k^{\times}=k \backslash\{0\}$ has inverse $\theta\left(x^{-1}\right)$, hence it cannot be zero). Hence

$$
\operatorname{ker}\left(\varphi_{\ell}\right)=\left\{m \in \mathbb{Z}: \varphi_{k}(m) \in \operatorname{ker}(\theta)\right\}=\left\{m \in \mathbb{Z}: \varphi_{k}(m)=0\right\}=\operatorname{ker}\left(\varphi_{k}\right)
$$

so that $k$ and $\ell$ have the same characteristic.
If the two fields have characteristic $p>0$, then they contain the prime field $\mathbb{F}_{p}$ as images of $\varphi_{k}$ and $\varphi_{\ell}$ and those prime fields are mapped "identically" because $\varphi_{\ell}=\theta \varphi_{k}$.
If the two fields have characteristic 0 , then $\theta$ maps each integer $m \cdot 1_{k}$ to $m \cdot 1_{\ell}$. The inclusion $\varphi_{k}: \mathbb{Z} \longrightarrow k$ extends to an inclusion $\overline{\varphi_{k}}: \mathbb{Q} \longrightarrow k$ by sending $m / n \mapsto \varphi_{k}(m) \varphi_{k}(n)^{-1}$ for $m, n \in \mathbb{Z}$ with $n \neq 0$. Similarly for $\varphi_{\ell}$ extending to $\overline{\varphi_{\ell}}: \mathbb{Q} \longrightarrow \ell$. In order to conclude, it is enough to prove that $\overline{\varphi_{\ell}}=\theta \circ \overline{\varphi_{k}}$, so that $\theta$ is the "identity" on the prime fields $\mathbb{Q}$ seen as images of $\overline{\varphi_{k}}$ and $\overline{\varphi_{\ell}}$. This is done by using the fact that $\varphi_{\ell}=\theta \varphi_{k}$ : for all $m, n \in \mathbb{Z}$ with $n \neq 0$,

$$
\begin{aligned}
\left(\theta \circ \overline{\varphi_{k}}\right)(m / n) & =\theta\left(\overline{\varphi_{\ell}}(m / n)\right)=\theta\left(\varphi_{\ell}(m) \varphi_{\ell}(n)^{-1}\right) \\
& =\left(\theta \varphi_{\ell}\right)(m) \cdot\left(\theta \varphi_{\ell}\right)(n)^{-1}=\varphi_{\ell}(m) \varphi_{\ell}(n)^{-1}=\overline{\varphi_{\ell}}(m / n) .
\end{aligned}
$$

5. We say that a field $k$ is perfect if every algebraic field extension of $k$ is separable.
(a) Prove that a field $k$ is perfect if and only if every polynomial $f \in k[X]$ is separable.
(b) Show that fields of characteristic zero are perfect.
(c) Suppose that $\operatorname{char}(k)=p>0$. Prove that $k$ is perfect if and only if the Frobenius homomorphism $\varphi: k \longrightarrow k$ sending $x \mapsto x^{p}$ is surjective.
(d) Deduce that finite fields are perfect.

## Solution:

(a) Let $k$ be a perfect field and $f_{0} \in k[X]$ an irreducible polynomial. Let $x \in \bar{k}$ be a root of $f_{0}$. Then $k(x)$ is a field extension of $k$ and by assumption it is separable. Hence $x$ is a separable element, meaning that $\operatorname{irr}(x ; k)=f_{0}$ is a separable polynomial. Now let $f \in k[X]$ be an arbitrary polynomial. Every irreducible factor of $f$ is separable by arbitrarity of $f_{0}$ in the initial argument, which implies that $f$ is separable by definition.
Conversely, assume that every polynomial in $k[X]$ is separable and let $\ell / k$ be an algebraic field extension. For every $\alpha \in \ell$, the minimal polynomial $\operatorname{irr}(\alpha, k)$ exists because $\ell / k$ is algebraic; it is a separable polynomial by assumption, meaning that $\alpha$ is separable. Hence $\ell / k$ is a separable field extension.
(b) By Corollary II. 10 (Week 16), we know that every irreducible polynomial in $k[X]$ has no multiple root. This means that every irreducible polynomial in $k[X]$ is separable. Then, for every $f \in k[X]$, each irreducible factor of $f$ is separable, so that $f$ is separable as well.
(c) Suppose that $k$ is a perfect field and let us prove that each $y \in k$ has a $p$-th root in $k$. Since $k$ is perfect, the polynomial $f=X^{p}-y \in k[X]$ must be separable. For $x \in \bar{k}$ a root of $f$, we have a factorization

$$
f=(X-x)^{p} .
$$

Hence $x$ is the only root of $f$ in $\bar{k}$ and a factor of $f$ in $k[X]$ has no multiple roots in $\bar{k}$ if and only if it is a linear factor. As each irreducible factor of $f$ in $k[X]$ must have no multiple root, the only possibility is that $f$ splits completely in $k[X]$. In particular, $x \in k$.
Conversely, assume that the Frobenius map $\varphi: k \longrightarrow k$ is surjective and let us prove that every irreducible polynomial $f$ in $k[X]$ is separable, which is enough to prove that $k$ is perfect as noticed in part (a). Suppose that $f \in k[X]$ is irreducible and has multiple roots. Then $\operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$ by Lemma II. 9 (Week 16). Since $f$ is irreducible, $\operatorname{gcd}\left(f, f^{\prime}\right)$ must be divisible by $f$. But $\operatorname{gcd}\left(f, f^{\prime}\right)$ divides $f^{\prime}$ of degree smaller than $f$, so that the only possibility is that $\operatorname{gcd}\left(f, f^{\prime}\right)=0$, which can hold only if $f^{\prime}=0$. This is the case if and only if $f \in k\left[X^{p}\right]$, because the coefficients of degree not divisible by $p$ do not vanish when we take the formal derivative of $f$. As $\varphi$ is surjective, every coefficient of $f$ is a $p$-th power of an element in $k$, so that we can write

$$
f=\sum_{k=0}^{n}\left(b_{k}\right)^{p} x^{p k}=\left(\sum_{k=0}^{n} b_{k} x^{k}\right)^{p},
$$

a proper factorization of $f$ in $k[X]$, which is a contradiction to the assumption that $f$ is irreducible. Hence $f$ has no multiple roots.
(d) Let $k=\mathbb{F}_{p^{n}}$ be a finite field of characteristic $p$. The Frobenius homomorphism $\varphi$ is a $\mathbb{F}_{p}$-field automorphism of $\mathbb{F}_{p^{n}}$. It is injective because $\operatorname{ker}(\varphi)=0$ since fields are integral domains. By Assignment 15, Exercise 1, $\varphi$ is a $\mathbb{F}_{p}$-linear map between vector spaces of same finite dimension, which implies that it is a bijection and in particular a surjective map. By part (c), $k[X]$ is perfect.
6. Let $k$ be a finite field and consider a finite field extension $k(\alpha, \beta) / k$. Suppose that $k(\alpha) \cap k(\beta)=k$. Prove that $k(\alpha, \beta)=k(\alpha+\beta)$.
Solution: Let $q=\operatorname{card}(k)$ be a power of a prime $p$. We write $k=\mathbb{F}_{q}$ and we know that $\operatorname{char}(k)=p$. Fix an algebraic closure $\bar{k}$. Then, as seen in Algebra I, for each power $q^{t}$ of $q$ there exists a unique subfield of $\bar{k}$ containing $q^{t}$ elements, it consists of those elements $\alpha \in \bar{k}$ such that $\alpha^{q^{t}}=\alpha$. The proof of Assignment 13, Exercise 1 (b) generalizes to $q$ and tells us that $\mathbb{F}_{q^{s}} \subset \mathbb{F}_{q^{t}}$ if and only if $s \mid t$.
Let $n, m \in \mathbb{N}$ be such that $k(\alpha)=\mathbb{F}_{q^{n}}$ and $k(\beta)=\mathbb{F}_{q^{m}}$. Here $n$ is the minimal positive integer $h$ such that $\alpha^{q^{h}}=\alpha$, because otherwise $k(\alpha)$ would be contained in a strictly smaller subfield of $\mathbb{F}_{q^{n}}$. Since $k=k(\alpha) \cap k(\beta)$ is the smallest subfield of $\bar{k}$ contained in both $\mathbb{F}_{q^{n}}$ and $\mathbb{F}_{q^{m}}$, we deduce that $\operatorname{gcd}(m, n)=1$. Then $p$ divides either $m$ or $n$, without loss of generality, assume that $p \nmid n$. Moreover, $k(\alpha, \beta)$ is the smallest subfield of $\bar{k}$ containing both $\mathbb{F}_{q^{n}}$ and $\mathbb{F}_{q^{m}}$, so that $k(\alpha, \beta)=\mathbb{F}_{q^{m n}}$.
We write $k(\alpha+\beta)=\mathbb{F}_{q^{t}}$. This means that

$$
\alpha^{q^{t}}+\beta^{q^{t}}=(\alpha+\beta)^{q^{t}}=\alpha+\beta,
$$

implying that

$$
\alpha^{q^{t}}-\alpha=-\left(\beta^{q^{t}}-\beta\right) \in k(\alpha) \cap k(\beta)=k .
$$

Write $\alpha^{q^{t}}=\alpha+\lambda$ for $\lambda \in \mathbb{F}_{q}$ and repeatedly raising to the $q^{t}$-th power, we deduce inductively that

$$
\alpha^{q^{t p}}=\alpha+p \lambda=\alpha
$$

This means that $n \mid t p$ and since $p \nmid n$ we obtain that $n \mid t$, so that $k(\alpha+\beta)=\mathbb{F}_{q^{t}}$ contains $k(\alpha)$, so that $\alpha \in k(\alpha+\beta)$. This implies that $\beta=(\alpha+\beta)-\alpha \in k(\alpha+\beta)$, as well. Hence $k(\alpha, \beta) \subset k(\alpha+\beta)$. The other inclusion is obvious and we can conclude that $k(\alpha, \beta)=k(\alpha+\beta)$.

