Solution 21

Solvability by Radicals

1. Let be (N, \cdot) and (H, \cdot) be two groups and $\varphi: H \longrightarrow \operatorname{Aut}(N)$ a group homomorphism. Write $\varphi_{h}:=\varphi(h) \in \operatorname{Aut}(N)$ for each $h \in H$. Define $G:=N \rtimes_{\varphi} H$, the (external) semidirect product of N and H, as the set $N \times H$ with the binary operation

$$
\forall n, n^{\prime} \in N, \forall h, h^{\prime} \in H,(n, h) \cdot \varphi\left(n^{\prime}, h^{\prime}\right)=\left(n \cdot \varphi_{h}\left(n^{\prime}\right), h \cdot h^{\prime}\right)
$$

(a) Check that $\left(N \rtimes_{\varphi} H,{ }_{\varphi}\right)$ is a group.
(b) Prove: there is a short exact sequence $1 \longrightarrow N \xrightarrow{j} N \rtimes_{\varphi} H \xrightarrow{\pi} H \longrightarrow 1$.
(c) Deduce that $G=N \rtimes_{\varphi} H$ contains two subgroups N_{0}, H_{0} with $N_{0} \unlhd G$, such that $N \cong N_{0}$ and $H \cong H_{0}$, satisfying the properties

$$
\left\{\begin{array}{l}
N_{0} H_{0}=G \\
N_{0} \cap H_{0}=\{1\} .
\end{array}\right.
$$

Conversely, let G be a group, $H \leqslant G$ a subgroup and $N \unlhd G$ a normal subgroup. We say that G is the (inner) semidirect product of N and H, if

$$
\left\{\begin{array}{l}
N H=G \\
N \cap H=\{1\} .
\end{array}\right.
$$

In this case, we write $G=N \rtimes H$. Assume that this is the case.
(d) Prove: there is a unique homomorphism $\alpha: G \longrightarrow H$ such that $\left.\alpha\right|_{H}=\operatorname{id}_{H}$ and $\operatorname{ker}(\alpha)=N$.
(e) Let $\varphi: H \longrightarrow \operatorname{Aut}(N)$ be the action of H on N by conjugation, that is, $\varphi(h)(n):=h n h^{-1}$ for all $h \in H$ and $n \in N$. Show that there is an isomorphism $\theta: G \xrightarrow{\sim} N \rtimes_{\varphi} H$ which satisfies $\left.\theta\right|_{N}=j$ and $\alpha=\pi \circ \theta$. Draw a diagram containing two short exact sequences which explains the situation.
(f) Let M be a normal subgroup of N. Show that $M \unlhd G$ if and only if $h M h^{-1}=$ M for all $h \in H$.

Solution:

(a) The formula given in the exercise is a well-defined binary operation on the set $N \times H$, since φ_{h} is an automorphism of N for each $h \in H$, so that $\varphi_{h}\left(n^{\prime}\right) \in N$ for each $n^{\prime} \in N$ and then using the binary operations on N and H we know that $n \cdot \varphi_{h}\left(n^{\prime}\right) \in N$ and $h \cdot h^{\prime} \in H$.

First, we check that the operation ${ }_{\varphi}$ is associative. For each $n, n^{\prime}, n^{\prime \prime} \in N$ and $h, h^{\prime}, h^{\prime \prime} \in H$, we compute (omitting the sign \cdot for the group operations in N and H and using associativity in those two groups by omitting parentheses when the group operation is performed several times)

$$
\begin{aligned}
\left((n, h) \cdot \varphi\left(n^{\prime}, h^{\prime}\right)\right) & \cdot \varphi\left(n^{\prime \prime}, h^{\prime \prime}\right)=\left(n \varphi_{h}\left(n^{\prime}\right), h h^{\prime}\right) \cdot \varphi\left(n^{\prime \prime}, h^{\prime \prime}\right) \\
& =\left(n \varphi_{h}\left(n^{\prime}\right) \varphi_{h h^{\prime}}\left(n^{\prime \prime}\right), h h^{\prime} h^{\prime \prime}\right) \stackrel{(*)}{=}\left(n \varphi_{h}\left(n^{\prime}\right)\left(\varphi_{h} \circ \varphi_{h^{\prime}}\right)\left(n^{\prime \prime}\right), h h^{\prime} h^{\prime \prime}\right) \\
& =\left(n \varphi_{h}\left(n^{\prime}\right) \varphi_{h}\left(\varphi_{h^{\prime}}\left(n^{\prime \prime}\right)\right), h h^{\prime} h^{\prime \prime}\right) \stackrel{(* *)}{=}\left(n \varphi_{h}\left(n^{\prime} \varphi_{h^{\prime}}\left(n^{\prime \prime}\right)\right), h h^{\prime} h^{\prime \prime}\right) \\
& =(n, h) \cdot \varphi\left(n^{\prime} \varphi_{h^{\prime}}\left(n^{\prime \prime}\right), h^{\prime} h^{\prime \prime}\right)=(n, h) \cdot \varphi_{\varphi}\left(\left(n^{\prime}, h^{\prime}\right) \cdot \varphi\left(n^{\prime \prime}, h^{\prime \prime}\right)\right)
\end{aligned}
$$

so that $\cdot \varphi$ is associative. In the step $(*)$ we use the assumption that φ is a group homomorphism, while in the step $(* *)$ we use the assumption that φ_{h} is a group homomorphism.
We notice that $(1,1)=\left(1_{N}, 1_{H}\right)$ is the neutral element of $N \rtimes_{\varphi} H$. Indeed, we know that $\varphi_{1}=\varphi(1)=$ id since φ is a group homomorphism, while $\varphi_{h}(1)=1$ for each $h \in H$ because φ_{h} is a group automorphism of N. Hence for every $h \in H$ and $n \in N$

$$
\begin{aligned}
& (1,1) \cdot \varphi(n, h)=\left(1 \cdot \varphi_{1}(n), 1 \cdot h\right)=(1 \cdot n, 1 \cdot h)=(n, h) \\
& (n, h) \cdot \varphi(1,1)=\left(n \cdot \varphi_{h}(1), h \cdot 1\right)=(n \cdot 1, h \cdot 1)=(n, h) .
\end{aligned}
$$

We look now for an inverse $\left(n^{\prime}, h^{\prime}\right)$ of (n, h) with $n, n^{\prime} \in N$ and $h, h^{\prime} \in H$. We want to ensure that the equalities

$$
\left\{\begin{aligned}
(1,1) & \stackrel{!}{=}(n, h) \cdot \varphi\left(n^{\prime}, h^{\prime}\right)=\left(n \varphi_{h}\left(n^{\prime}\right), h h^{\prime}\right) \\
(1,1) & \stackrel{!}{=}\left(n^{\prime}, h^{\prime}\right) \cdot \varphi(n, h)=\left(n^{\prime} \varphi_{h^{\prime}}(n), h^{\prime} h\right)
\end{aligned}\right.
$$

The second component coincides in both equalities by taking $h^{\prime}=h^{-1}$. Comparing the first component in the second equality, we get $n^{\prime}=\varphi_{h^{-1}}(n)^{-1}=$ $\varphi_{h^{-1}}\left(n^{-1}\right)$, which substituted in the first component in the first equation gives

$$
1 \stackrel{?}{=} n \varphi_{h}\left(\varphi_{h^{-1}}\left(n^{-1}\right)\right)=n \varphi_{h h^{-1}}\left(n^{-1}\right)=n \varphi_{1}\left(n^{-1}\right)=n n^{-1}=1,
$$

so that (n, h) has an inverse and we can conclude that $G=N \rtimes_{\varphi} H$ is a group.
(b) The map $j: N \longrightarrow N \rtimes_{\varphi} H$ sending $n \mapsto(n, 1)$ is injective and it is a group homomorphism since for each $n, n^{\prime} \in N$ we know that $(n, 1) \cdot \varphi\left(n^{\prime}, 1\right)=$ $\left(n \varphi_{1}\left(n^{\prime}\right), 1\right)=\left(n n^{\prime}, 1\right)$. The projection map $\alpha: N \rtimes_{\varphi} H \longrightarrow H$ sending $(n, h) \mapsto h$ is surjective and is seen to be a group homomorphism by definition of φ.
In order to conclude that j and α sits in a short exercise sequence, we need to check that $\operatorname{ker}(\pi)=\operatorname{im}(j)$, which is immediate by noticing that those two subgroups of $N \rtimes_{\varphi} H$ are both given by

$$
\begin{equation*}
N_{0}:=\{(n, 1): n \in N\} \subset N \rtimes_{\varphi} H . \tag{1}
\end{equation*}
$$

(c) Since j is injective, it restricts to an isomorphism $N \cong \operatorname{im}(j)=N_{0}$ (as defined in (1)) and since $N_{0}=\operatorname{ker}(\pi)$, it is a normal subgroup of G. The map $\iota: H \longrightarrow N \rtimes_{\varphi} H$ is seen to be an injective group homomorphism, so that H is isomorphic to

$$
H_{0}:=\operatorname{im}(\iota)=\{(1, h): h \in H\} \leqslant N \rtimes_{\varphi} H .
$$

By construction,
$N_{0} H_{0}=\left\{(n, 1) \cdot{ }_{\varphi}(1, h): n \in N, h \in H\right\}=\left\{\left(n \cdot \varphi_{1}(1), h\right): n \in N, h \in H\right\}=G$ and

$$
N_{0} \cap H_{0}=\{(1,1)\}
$$

so that N_{0} and H_{0} satisfy all the desired properties.
(d) Now we are working with a group G containg two subgroups $N \unlhd G$ and $H \unlhd G$ such that $N H=G$ and $N \cap H=G$. For each $g \in G$, there exist $n \in N$ and $h \in H$ for which $g=n h$. We claim that those are uniquely determined.
Suppose that $n, n^{\prime} \in N$ and $h, h^{\prime} \in H$ satisfy $n h=n^{\prime} h^{\prime}$. Then

$$
h\left(h^{\prime}\right)^{-1}=n^{-1} n^{\prime} \in H \cap N=\{1\}
$$

so that $1=h\left(h^{\prime}\right)^{-1}=n^{-1} n^{\prime}$ which means that $h=h^{\prime}$ and $n=n^{\prime}$. This proves our claim.
Hence the assignment $n h \mapsto h$ is a well defined map $\alpha: G \longrightarrow H$, which is surjective since $h=1 \cdot h \mapsto h$ for each $h \in H$. This also proves the desired property that $\left.\alpha\right|_{H}=\mathrm{id}_{H}$. In order to prove that α is a group homomorphism, we need to check that $\alpha\left(n h n^{\prime} h^{\prime}\right)=h h^{\prime}$ for each $n, n^{\prime} \in N$ and $h, h^{\prime} \in H$. This is the case because

$$
n h n^{\prime} h^{\prime}=n\left(h n^{\prime} h^{-1}\right) h h^{\prime}
$$

and $n\left(h n^{\prime} h^{-1}\right) \in N$ because $N \unlhd G$. Finally, $\operatorname{ker}(\alpha)=\{n \cdot 1, n \in N\}=N$ by definition of α.
For uniqueness, suppose that $\alpha: G \longrightarrow H$ is a group homomorphism such that $\left.\alpha\right|_{H}=\operatorname{id}_{H}$ and $\operatorname{ker}(\alpha)=N$. Then, for each $g \in G$, write $g=n h$ for unique $n \in N$ and $h \in H$. We necessarily have

$$
\alpha(n h)=\alpha(n) \alpha(h)=1_{G} \cdot h=h,
$$

which proves uniqueness of α.
(e) The map φ is well defined because $N \unlhd G$ so that it is closed under conjugation by elements of H. It is easily checked to be a group homomorphism.
As we showed in the previous part, for each $g \in G$ there exist $n \in N$ and $h \in H$ such that $g=n h$. Hence there is a well defined bijection $\theta: G \longrightarrow$
$N \rtimes_{\varphi} H$ sending $n h \mapsto(n, h)$. This is a group homomorphism, since for each $n, n^{\prime} \in N$ and $h, h^{\prime} \in H$

$$
\begin{aligned}
\theta\left(n h n^{\prime} h^{\prime}\right) & =\theta\left(n h n^{\prime} h^{-1} h h^{\prime}\right)=\theta\left(n \varphi_{h}\left(n^{\prime}\right) h h^{\prime}\right)=\left(n \varphi_{h}\left(n^{\prime}\right), h h^{\prime}\right) \\
& =(n, h) \cdot \varphi\left(n^{\prime}, h^{\prime}\right)=\theta(n h) \cdot \theta\left(n^{\prime} h^{\prime}\right) .
\end{aligned}
$$

Then, for each $n \in N$ and $h \in H$, we see that $\theta(n)=(n, 1)=j(n)$ and that $\alpha(n h)=h=\pi(n, h)=\pi(\theta(n h))$ so that θ satisfies all the desired properties. We have a commutative diagram

This can be said to be an isomorphism of short exact sequences. Since the vertical maps on the sides are identity maps, this is a special isomorphism, called an equivalence of group extensions.
(f) If $M \unlhd G$, then it is stable under the conjugation of elements of H because $H \subset G$. Conversely, if $h_{0} M h_{0}^{-1}$ for each $h_{0} \in H$, then, for each $g \in G$, writing $g=n h$ with $n \in N$ and $h \in H$, we obtain

$$
g M g^{-1}=n h M h^{-1} n^{-1}=n M n^{-1}=M,
$$

where in the second step we used the assumption that $M \unlhd N$.
2. Let p be a prime number and $n \geqslant 1$ an integer. Consider the natural action $\varphi: \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right) \longrightarrow \operatorname{Aut}\left(\mathbb{F}_{p}^{n}\right)$. Let $G=\mathbb{F}_{p}^{n} \rtimes_{\varphi} \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ and embed $\mathbb{F}_{p}^{n} \hookrightarrow G$ via Exercise 1. Let $L \leqslant \mathbb{F}_{p}^{n}$ be a \mathbb{F}_{p}-linear subspace of \mathbb{F}_{p}^{n}. Show that L is subnormal in G and that $L \unlhd G$ if and only if $L=0$ or $L=\mathbb{F}_{p}^{n}$.
Solution: In the setup of Exercise 1, suppose that N and H are groups and $\varphi: H \longrightarrow \operatorname{Aut}(N)$ a group homomorphism. Let $G=N \rtimes_{\varphi} H$. Then as in part 1(c) we define $N_{0}:=N \times 1 \unlhd N \rtimes_{\varphi} 1$ and $H_{0}:=1 \times H \triangleleft 1 \times H$ and obtain that $G=N_{0} \rtimes H_{0}$ (that is, N_{0} and H_{0} satisfy $N_{0} H_{0}=G$ and $N_{0} \cap H_{0}=1$). Then, by part (e), $G \cong N_{0} \rtimes_{\varphi^{\prime}} H_{0}$ where $\varphi^{\prime}: H_{0} \longrightarrow \operatorname{Aut}\left(N_{0}\right)$ is the conjugation of N_{0} by H_{0} inside G. We claim that φ^{\prime} corresponds to φ under the canonical identification $N \cong N_{0}$ and $H \cong H_{0}$. This is checked by letting $h \in H$ and $n \in N$ and computing

$$
\varphi_{(1, h)}^{\prime}(n, 1)=(1, h)(n, 1)\left(1, h^{-1}\right)=\left(\varphi_{h}(n), h\right)\left(1, h^{-1}\right)=\left(\varphi_{h}(n), 1\right) .
$$

Since a normal subgroup $M_{0} \unlhd N_{0}$ corresponds canonically to a normal subgroup $M \unlhd N$ and it is normal in G if and only if the conjugation by H_{0} preserves M_{0}, we deduce that M_{0} is normal in G if and only if for $\varphi_{h}(M) \subset M$ for each $h \in H$.

In the situation of our exercise, this means that we just need to check that a linear subspace $L \subseteq \mathbb{F}_{p}^{n}$ is normal in $G=\mathbb{F}_{p}^{n} \rtimes_{\varphi} \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ if and only if it is stable under the action of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. By basic linear algebra, taking bases of two proper distinct subspaces of the same dimension, we see that there exists $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ mapping one to the other, so that the only subspaces of \mathbb{F}_{p}^{n} stable under the action of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ are 0 and \mathbb{F}_{p}^{n}, as desired.
3. Let G be a finite group.
(a) Suppose that G has a normal subgroup $N \unlhd G$ such that G / N is abelian. Prove that G has a normal subgroup of prime index, which contains N.
(b) Prove that G is solvable if and only if it has a normal series all whose factors are cyclic of prime order.

Solution:

(a) By the classification of finitely generated abelian groups we know that there exists a finite set of prime numbers P_{0} and positive integers l_{p} and $r_{p, n}$ for $p \in P_{0}$ and $1 \leqslant n \leqslant l_{p}$ such that

$$
G / N \cong \prod_{p \in P_{0}} \prod_{n=1}^{l_{p}} \mathbb{Z} / p^{r_{p, n}} \mathbb{Z}
$$

Isolating one of the factors we can write for some prime number p, an integer $n>0$ and an abelian group H

$$
\begin{equation*}
G / N \cong \mathbb{Z} / p^{n} \mathbb{Z} \times H \tag{2}
\end{equation*}
$$

The subgroup $p \mathbb{Z} / p^{n} \mathbb{Z} \times H \leqslant \mathbb{Z} / p^{n} \mathbb{Z} \times H$ is seen to have index p and it is normal because we are working in an abelian group. Via (2) we can map this subgroup to a subgroup of G / N with the same features. Since subgroup of G / N are subgroups of G containing N, we know that there is a subgroup $M \unlhd G$ such that (by the third isomorphism theorem for groups)

$$
[G: M]=[G / N: M / N]=p .
$$

(b) Assume that we are in the situation of part (a). Then, by induction on the index of N one can prove that there is a series a normal series

$$
N=M_{n} \unlhd M_{n-1} \unlhd \cdots \unlhd M_{1} \unlhd M_{0}=G
$$

such that each M_{k} / M_{k-1} is cyclic of prime order. Indeed, the subgroup M_{1} is found as in part (a) and then

$$
\left[M_{1}: N\right]=\frac{[G: N]}{\left[G: M_{1}\right]}<[G: N]
$$

so that we can apply the inductive hypothesis.
Suppose that G is solvable. Then, by the argument we just outlined, a normal sequence with abelian factors of G can be refined into a normal sequence whose factors are cyclic of prime order.
Conversely, a group with such a sequence is solvable by definition because cyclic groups are abelian.
4. Let k be a field and $f \in k[X]$ a polynomial of prime degree p. Let $E=\operatorname{Sf}(f)$. Suppose that $\operatorname{Gal}(E / k)$ is cyclic of order p. Prove that f is irreducible.
Solution: Let $q=\operatorname{card}(R(f)) \leqslant p$ and embed $\operatorname{Gal}(E / k)$ into S_{q} via its action on the roots of f. Since S_{q} contains an element of order p, then $p \mid \operatorname{Card}\left(S_{q}\right)=q$!, which can only be possible for $q \geqslant p$. Hence $q=p$ and f has p distinct roots. Let $\sigma \in S_{p}$ be a generator of $\operatorname{Gal}(E / k)$ so that σ is an element of order p. By Assignment 17, Exercise 4, σ is a p-cycle. Then the $\operatorname{group} \operatorname{Gal}(E / k)=<\sigma>\leqslant S_{p}$ acts transitively on the roots of f, which in turn is irreducible by Corollary II.23.

