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Prof. Marc Burger

Solution 21

Solvability by Radicals

1. Let be (N, ·) and (H, ·) be two groups and ϕ : H −→ Aut(N) a group homo-
morphism. Write ϕh := ϕ(h) ∈ Aut(N) for each h ∈ H. Define G := N oϕ H,
the (external) semidirect product of N and H, as the set N ×H with the binary
operation

∀n, n′ ∈ N,∀h, h′ ∈ H, (n, h) ·ϕ (n′, h′) = (n · ϕh(n′), h · h′).

(a) Check that (N oϕ H, ·ϕ) is a group.

(b) Prove: there is a short exact sequence 1 −→ N
j−→ N oϕ H

π−→ H −→ 1.

(c) Deduce that G = N oϕH contains two subgroups N0, H0 with N0 EG, such
that N ∼= N0 and H ∼= H0, satisfying the properties{

N0H0 = G
N0 ∩H0 = {1}.

Conversely, let G be a group, H 6 G a subgroup and N EG a normal subgroup.
We say that G is the (inner) semidirect product of N and H, if{

NH = G
N ∩H = {1}.

In this case, we write G = N oH. Assume that this is the case.

(d) Prove: there is a unique homomorphism α : G −→ H such that α|H = idH
and ker(α) = N .

(e) Let ϕ : H −→ Aut(N) be the action of H on N by conjugation, that is,
ϕ(h)(n) := hnh−1 for all h ∈ H and n ∈ N . Show that there is an isomor-
phism θ : G

∼−→ N oϕ H which satisfies θ|N = j and α = π ◦ θ. Draw a
diagram containing two short exact sequences which explains the situation.

(f) Let M be a normal subgroup of N . Show that MEG if and only if hMh−1 =
M for all h ∈ H.

Solution:

(a) The formula given in the exercise is a well-defined binary operation on the set
N×H, since ϕh is an automorphism of N for each h ∈ H, so that ϕh(n

′) ∈ N
for each n′ ∈ N and then using the binary operations on N and H we know
that n · ϕh(n′) ∈ N and h · h′ ∈ H.
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First, we check that the operation ·ϕ is associative. For each n, n′, n′′ ∈ N
and h, h′, h′′ ∈ H, we compute (omitting the sign · for the group operations in
N and H and using associativity in those two groups by omitting parentheses
when the group operation is performed several times)

((n, h) ·ϕ (n′, h′)) ·ϕ (n′′, h′′) = (nϕh(n
′), hh′) ·ϕ (n′′, h′′)

= (nϕh(n
′)ϕhh′(n

′′), hh′h′′)
(∗)
= (nϕh(n

′)(ϕh ◦ ϕh′)(n′′), hh′h′′)

= (nϕh(n
′)ϕh(ϕh′(n

′′)), hh′h′′)
(∗∗)
= (nϕh(n

′ϕh′(n
′′)), hh′h′′)

= (n, h) ·ϕ (n′ϕh′(n
′′), h′h′′) = (n, h) ·ϕ ((n′, h′) ·ϕ (n′′, h′′))

so that ·ϕ is associative. In the step (∗) we use the assumption that ϕ is a
group homomorphism, while in the step (∗∗) we use the assumption that ϕh
is a group homomorphism.

We notice that (1, 1) = (1N , 1H) is the neutral element of NoϕH. Indeed, we
know that ϕ1 = ϕ(1) = id since ϕ is a group homomorphism, while ϕh(1) = 1
for each h ∈ H because ϕh is a group automorphism of N . Hence for every
h ∈ H and n ∈ N

(1, 1) ·ϕ (n, h) = (1 · ϕ1(n), 1 · h) = (1 · n, 1 · h) = (n, h)

(n, h) ·ϕ (1, 1) = (n · ϕh(1), h · 1) = (n · 1, h · 1) = (n, h).

We look now for an inverse (n′, h′) of (n, h) with n, n′ ∈ N and h, h′ ∈ H.
We want to ensure that the equalities{

(1, 1)
!

= (n, h) ·ϕ (n′, h′) = (nϕh(n
′), hh′)

(1, 1)
!

= (n′, h′) ·ϕ (n, h) = (n′ϕh′(n), h′h).

The second component coincides in both equalities by taking h′ = h−1. Com-
paring the first component in the second equality, we get n′ = ϕh−1(n)−1 =
ϕh−1(n−1), which substituted in the first component in the first equation gives

1
?
= nϕh(ϕh−1(n−1)) = nϕhh−1(n−1) = nϕ1(n

−1) = nn−1 = 1,

so that (n, h) has an inverse and we can conclude that G = N oϕ H is a
group.

(b) The map j : N −→ N oϕ H sending n 7→ (n, 1) is injective and it is a
group homomorphism since for each n, n′ ∈ N we know that (n, 1) ·ϕ (n′, 1) =
(nϕ1(n

′), 1) = (nn′, 1). The projection map α : N oϕ H −→ H sending
(n, h) 7→ h is surjective and is seen to be a group homomorphism by definition
of ·ϕ.

In order to conclude that j and α sits in a short exercise sequence, we need
to check that ker(π) = im(j), which is immediate by noticing that those two
subgroups of N oϕ H are both given by

N0 := {(n, 1) : n ∈ N} ⊂ N oϕ H. (1)
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(c) Since j is injective, it restricts to an isomorphism N ∼= im(j) = N0 (as
defined in (1)) and since N0 = ker(π), it is a normal subgroup of G. The map
ι : H −→ N oϕ H is seen to be an injective group homomorphism, so that
H is isomorphic to

H0 := im(ι) = {(1, h) : h ∈ H} 6 N oϕ H.

By construction,

N0H0 = {(n, 1)·ϕ(1, h) : n ∈ N, h ∈ H} = {(n·ϕ1(1), h) : n ∈ N, h ∈ H} = G

and
N0 ∩H0 = {(1, 1)}

so that N0 and H0 satisfy all the desired properties.

(d) Now we are working with a group G containg two subgroups NEG and HEG
such that NH = G and N ∩H = G. For each g ∈ G, there exist n ∈ N and
h ∈ H for which g = nh. We claim that those are uniquely determined.

Suppose that n, n′ ∈ N and h, h′ ∈ H satisfy nh = n′h′. Then

h(h′)−1 = n−1n′ ∈ H ∩N = {1}

so that 1 = h(h′)−1 = n−1n′ which means that h = h′ and n = n′. This
proves our claim.

Hence the assignment nh 7→ h is a well defined map α : G −→ H, which is
surjective since h = 1 · h 7→ h for each h ∈ H. This also proves the desired
property that α|H = idH . In order to prove that α is a group homomorphism,
we need to check that α(nhn′h′) = hh′ for each n, n′ ∈ N and h, h′ ∈ H. This
is the case because

nhn′h′ = n(hn′h−1)hh′

and n(hn′h−1) ∈ N because N EG. Finally, ker(α) = {n · 1, n ∈ N} = N by
definition of α.

For uniqueness, suppose that α : G −→ H is a group homomorphism such
that α|H = idH and ker(α) = N . Then, for each g ∈ G, write g = nh for
unique n ∈ N and h ∈ H. We necessarily have

α(nh) = α(n)α(h) = 1G · h = h,

which proves uniqueness of α.

(e) The map ϕ is well defined because NEG so that it is closed under conjugation
by elements of H. It is easily checked to be a group homomorphism.

As we showed in the previous part, for each g ∈ G there exist n ∈ N and
h ∈ H such that g = nh. Hence there is a well defined bijection θ : G −→
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N oϕH sending nh 7→ (n, h). This is a group homomorphism, since for each
n, n′ ∈ N and h, h′ ∈ H

θ(nhn′h′) = θ(nhn′h−1hh′) = θ(nϕh(n
′)hh′) = (nϕh(n

′), hh′)

= (n, h) ·ϕ (n′, h′) = θ(nh) · θ(n′h′).

Then, for each n ∈ N and h ∈ H, we see that θ(n) = (n, 1) = j(n) and that
α(nh) = h = π(n, h) = π(θ(nh)) so that θ satisfies all the desired properties.

We have a commutative diagram

1 > N ⊂ > G
α
> H > 1

1 > N

wwwww
j
> N oϕ H

θ

∨
π
> H

wwwww
> 1

This can be said to be an isomorphism of short exact sequences. Since the
vertical maps on the sides are identity maps, this is a special isomorphism,
called an equivalence of group extensions.

(f) If M E G, then it is stable under the conjugation of elements of H because
H ⊂ G. Conversely, if h0Mh−10 for each h0 ∈ H, then, for each g ∈ G, writing
g = nh with n ∈ N and h ∈ H, we obtain

gMg−1 = nhMh−1n−1 = nMn−1 = M,

where in the second step we used the assumption that M EN .

2. Let p be a prime number and n > 1 an integer. Consider the natural action
ϕ : GLn(Fp) −→ Aut(Fnp ). Let G = Fnp oϕ GLn(Fp) and embed Fnp ↪→ G via
Exercise 1. Let L 6 Fnp be a Fp-linear subspace of Fnp . Show that L is subnormal
in G and that LEG if and only if L = 0 or L = Fnp .

Solution: In the setup of Exercise 1, suppose that N and H are groups and
ϕ : H −→ Aut(N) a group homomorphism. Let G = N oϕ H. Then as in part
1(c) we define N0 := N × 1 EN oϕ 1 and H0 := 1×H C 1×H and obtain that
G = N0 oH0 (that is, N0 and H0 satisfy N0H0 = G and N0 ∩H0 = 1). Then, by
part (e), G ∼= N0 oϕ′ H0 where ϕ′ : H0 −→ Aut(N0) is the conjugation of N0 by
H0 inside G. We claim that ϕ′ corresponds to ϕ under the canonical identification
N ∼= N0 and H ∼= H0. This is checked by letting h ∈ H and n ∈ N and computing

ϕ′(1,h)(n, 1) = (1, h)(n, 1)(1, h−1) = (ϕh(n), h)(1, h−1) = (ϕh(n), 1).

Since a normal subgroup M0 EN0 corresponds canonically to a normal subgroup
M E N and it is normal in G if and only if the conjugation by H0 preserves M0,
we deduce that M0 is normal in G if and only if for ϕh(M) ⊂M for each h ∈ H.
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In the situation of our exercise, this means that we just need to check that a
linear subspace L ⊆ Fnp is normal in G = Fnp oϕ GLn(Fp) if and only if it is stable
under the action of GLn(Fp). By basic linear algebra, taking bases of two proper
distinct subspaces of the same dimension, we see that there exists g ∈ GLn(Fp)
mapping one to the other, so that the only subspaces of Fnp stable under the action
of GLn(Fp) are 0 and Fnp , as desired.

3. Let G be a finite group.

(a) Suppose that G has a normal subgroup N E G such that G/N is abelian.
Prove that G has a normal subgroup of prime index, which contains N .

(b) Prove that G is solvable if and only if it has a normal series all whose factors
are cyclic of prime order.

Solution:

(a) By the classification of finitely generated abelian groups we know that there
exists a finite set of prime numbers P0 and positive integers lp and rp,n for
p ∈ P0 and 1 6 n 6 lp such that

G/N ∼=
∏
p∈P0

lp∏
n=1

Z/prp,nZ.

Isolating one of the factors we can write for some prime number p, an integer
n > 0 and an abelian group H

G/N ∼= Z/pnZ×H. (2)

The subgroup pZ/pnZ × H 6 Z/pnZ × H is seen to have index p and it is
normal because we are working in an abelian group. Via (2) we can map this
subgroup to a subgroup of G/N with the same features. Since subgroup of
G/N are subgroups of G containing N , we know that there is a subgroup
M EG such that (by the third isomorphism theorem for groups)

[G : M ] = [G/N : M/N ] = p.

(b) Assume that we are in the situation of part (a). Then, by induction on the
index of N one can prove that there is a series a normal series

N = Mn EMn−1 E · · ·EM1 EM0 = G

such that each Mk/Mk−1 is cyclic of prime order. Indeed, the subgroup M1

is found as in part (a) and then

[M1 : N ] =
[G : N ]

[G : M1]
< [G : N ]
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so that we can apply the inductive hypothesis.

Suppose that G is solvable. Then, by the argument we just outlined, a normal
sequence with abelian factors of G can be refined into a normal sequence
whose factors are cyclic of prime order.

Conversely, a group with such a sequence is solvable by definition because
cyclic groups are abelian.

4. Let k be a field and f ∈ k[X] a polynomial of prime degree p. Let E = Sf(f).
Suppose that Gal(E/k) is cyclic of order p. Prove that f is irreducible.

Solution: Let q = card(R(f)) 6 p and embed Gal(E/k) into Sq via its action on
the roots of f . Since Sq contains an element of order p, then p|Card(Sq) = q!,
which can only be possible for q > p. Hence q = p and f has p distinct roots.
Let σ ∈ Sp be a generator of Gal(E/k) so that σ is an element of order p. By
Assignment 17, Exercise 4, σ is a p-cycle. Then the group Gal(E/k) =< σ >6 Sp
acts transitively on the roots of f , which in turn is irreducible by Corollary II.23.

6


