Algebra II

Solution 22

FIXED SUBFIELD

- 1. Let E/k be a splitting field of $X^n 1 \in k[X]$ and $\Gamma_n(E)$ the subgroup of E^{\times} of *n*-th roots of unity. Show that
 - (a) If char(k) = 0, then $|\Gamma_n(E)| = n$.
 - (b) If char(k) = p, and $n = p^{\ell}m$ with $p \nmid m$, then $|\Gamma_n(E)| = m$.

Solution: Let $f = X^n - 1$.

- (a) Suppose that $\operatorname{char}(k) = 0$. Then $f' = nX^{n-1} \neq 0$ so that each irreducible factor of f' is X (up to a multiplicative constant in k^{\times}). But $X \nmid f$, so that $\operatorname{gcd}(f, f') = 1$ and f has no multiple roots. Since all roots of f are in E, $|\Gamma_n(E)| = n$.
- (b) Suppose that $\operatorname{char}(k) = p$ and write $n = p^{\ell}m$ with $p \nmid m$. Notice that, since $\operatorname{char}(k) = p$,

$$(X^m - 1)^p = X^{mp} - 1$$

and iterating this process we obtain

$$(X^m - 1)^{p^{\ell}} = X^{mp^{\ell}} - 1 = X^n - 1.$$

Then $f = g^{p^{\ell}}$ for $g = X^m - 1$ and the roots of f coincide with the roots of g. Now, we see that $g' = mX^{m-1} \neq 0$ and the same reasoning done in part (a) tells us that gcd(g,g') = 1, so that $|\Gamma_n(E)| = |R(g)| = m$.

2. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Recall that $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. List all subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))$ and for each subgroup H determine the subfield E^H .

Solution: By Assignment 16, Exercise 3, the Galois groups of $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ consists of the four elements id, $\sigma_2, \sigma_3, \sigma_2 \circ \sigma_3$ where σ_2 maps $\sqrt{2} \mapsto -\sqrt{2}$ and $\sqrt{3} \mapsto \sqrt{3}$, while σ_3 maps $\sqrt{2} \mapsto \sqrt{2}$ and $\sqrt{3} \mapsto -\sqrt{3}$. Notice that $\sqrt{6} = \sqrt{2} \cdot \sqrt{3}$, so that it changes sign under the action of σ_2 and σ_3 and it is fixed by $\sigma_2 \circ \sigma_3$.

The subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ are given by $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ itself, $\langle \sigma_2 \rangle$, $\langle \sigma_3 \rangle$, $\langle \sigma_2 \circ \sigma_3 \rangle$ and {id}.

A Q-basis of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ is seen to be given by $1,\sqrt{2},\sqrt{3},\sqrt{6}$. Hence, writing a general element $x \in \mathbb{Q}(\sqrt{2},\sqrt{3})$ as $x = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$, we can see when it is fixed by an element of the Galois group:

- id fixes all $x \in \mathbb{Q}(\sqrt{2}, \sqrt{3});$
- $\sigma_2(x) = \sigma_2(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) = a b\sqrt{2} + c\sqrt{3} d\sqrt{6} \stackrel{!}{=} x$ if and only if b = d = 0, that is, $x \in \mathbb{Q}(\sqrt{3})$;
- $\sigma_3(x) = a + b\sqrt{2} c\sqrt{3} d\sqrt{6} \stackrel{!}{=} x$ if and only if c = d = 0, that is, $x \in \mathbb{Q}(\sqrt{2})$;
- $\sigma_2 \circ \sigma_3(x) = a b\sqrt{2} c\sqrt{3} + d\sqrt{6} \stackrel{!}{=} x$ if and only if b = c = 0, that is, $x \in \mathbb{Q}(\sqrt{6})$.

Putting all this together, we see that

- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\mathrm{id}} = \mathrm{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3});$
- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\langle \sigma_2 \rangle} = \mathbb{Q}(\sqrt{3});$
- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\langle\sigma_3\rangle} = \mathbb{Q}(\sqrt{2});$
- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\langle \sigma_2 \circ \sigma_3 \rangle} = \mathbb{Q}(\sqrt{6}).$
- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})} = \mathbb{Q}.$
- 3. Let p > 2 be a prime number and $\zeta := e^{\frac{2\pi i}{p}}$. Let $E = \mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$.
 - (a) Show that there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ of order 2. What is its generator? [*Hint:* It is an element of order 2]
 - (b) Prove that $\mathbb{Q}(\zeta + \zeta^{-1}) \subseteq E^H$ and that $[E : \mathbb{Q}(\zeta + \zeta^{-1})] \leq 2$.
 - (c) Deduce that $E^H = \mathbb{Q}(\zeta + \zeta^{-1}).$

Solution: By Assignment 16, Exercise 2, an isomorphism $(\mathbb{Z}/p\mathbb{Z})^{\times} \longrightarrow \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ is given by $k + p\mathbb{Z} \mapsto (\zeta \mapsto \zeta^k)$ for each $k \in \mathbb{Z}$. Recall that an automorphism of $\mathbb{Q}(\zeta)$ (fixing \mathbb{Q}) is indeed uniquely determined by the image of ζ , which in turn needs to be another root of $\operatorname{irr}(\zeta, \mathbb{Q}) = \frac{X^p - 1}{X - 1} = X^{p-1} + X^{p-2} + \cdots + X + 1$.

- (a) By Algebra I, we know that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic of order p-1 because $\mathbb{Z}/p\mathbb{Z}$ is a finite field. p-1 is divisible by 2 since p is odd. Hence $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ has a unique subgroup of order 2. It is generated by the $\frac{p-1}{2}$ -th power of a generator of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$. Only one element $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ can have order 2, because two distinct such elements generate distinct subgroups of order 2. We also know that complex conjugation $\sigma : x \mapsto \overline{x}$ belongs to $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ which clearly has order 2, so that $H = \langle \sigma \rangle$.
- (b) As $|\zeta| = 1$, we see that $\zeta^{-1} = \overline{\zeta}$, so that σ actually corresponds to the class of $-1 \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

At any rate,

$$\sigma(\zeta+\zeta^{-1})=\sigma(\zeta)+\sigma(\zeta^{-1})=\zeta^{-1}+\zeta,$$

so that $\zeta + \zeta^{-1} \in E^H$. As E^H is a subfield of E, we can conclude that $\mathbb{Q}(\zeta + \zeta^{-1}) \subset E$. Notice that ζ is a root of $(X - \zeta)(X - \zeta^{-1}) = X^2 - (\zeta + \zeta^{-1})X + 1 \in \mathbb{Q}(\zeta + \zeta^{-1})[X]$, so that $[E : \mathbb{Q}(\zeta + \zeta^{-1})] \leq 2$.

(c) By Proposition IV.9, $[E: E^H] = |H| = 2$. Hence we know that

$$2 \cdot [E^H : \mathbb{Q}(\zeta + \zeta^{-1})] = [E : \mathbb{Q}(\zeta + \zeta^{-1})] \leq 2$$

so that $[E^H : \mathbb{Q}(\zeta + \zeta^{-1})] = 1$, meaning that $E^H = \mathbb{Q}(\zeta + \zeta^{-1})$.