Solution 22

Fixed subfield

1. Let E / k be a splitting field of $X^{n}-1 \in k[X]$ and $\Gamma_{n}(E)$ the subgroup of E^{\times}of n-th roots of unity. Show that
(a) If $\operatorname{char}(k)=0$, then $\left|\Gamma_{n}(E)\right|=n$.
(b) If $\operatorname{char}(k)=p$, and $n=p^{\ell} m$ with $p \nmid m$, then $\left|\Gamma_{n}(E)\right|=m$.

Solution: Let $f=X^{n}-1$.
(a) Suppose that $\operatorname{char}(k)=0$. Then $f^{\prime}=n X^{n-1} \neq 0$ so that each irreducible factor of f^{\prime} is X (up to a multiplicative constant in k^{\times}). But $X \nmid f$, so that $\operatorname{gcd}\left(f, f^{\prime}\right)=1$ and f has no multiple roots. Since all roots of f are in E, $\left|\Gamma_{n}(E)\right|=n$.
(b) Suppose that $\operatorname{char}(k)=p$ and write $n=p^{\ell} m$ with $p \nmid m$. Notice that, since $\operatorname{char}(k)=p$,

$$
\left(X^{m}-1\right)^{p}=X^{m p}-1
$$

and iterating this process we obtain

$$
\left(X^{m}-1\right)^{p^{\ell}}=X^{m p^{\ell}}-1=X^{n}-1 .
$$

Then $f=g^{p^{\ell}}$ for $g=X^{m}-1$ and the roots of f coincide with the roots of g. Now, we see that $g^{\prime}=m X^{m-1} \neq 0$ and the same reasoning done in part (a) tells us that $\operatorname{gcd}\left(g, g^{\prime}\right)=1$, so that $\left|\Gamma_{n}(E)\right|=|R(g)|=m$.
2. Let $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Recall that $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. List all subgroups of $\operatorname{Gal}\left(\mathbb{Q}(\sqrt{2}, \sqrt{3})\right.$ and for each subgroup H determine the subfield E^{H}.
Solution: By Assignment 16, Exercise 3, the Galois groups of $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ consists of the four elements id, $\sigma_{2}, \sigma_{3}, \sigma_{2} \circ \sigma_{3}$ where σ_{2} maps $\sqrt{2} \mapsto-\sqrt{2}$ and $\sqrt{3} \mapsto \sqrt{3}$, while σ_{3} maps $\sqrt{2} \mapsto \sqrt{2}$ and $\sqrt{3} \mapsto-\sqrt{3}$. Notice that $\sqrt{6}=\sqrt{2} \cdot \sqrt{3}$, so that it changes sign under the action of σ_{2} and σ_{3} and it is fixed by $\sigma_{2} \circ \sigma_{3}$.
The subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})$ are given by $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})$ itself, $\left\langle\sigma_{2}\right\rangle$, $\left\langle\sigma_{3}\right\rangle,\left\langle\sigma_{2} \circ \sigma_{3}\right\rangle$ and $\{\mathrm{id}\}$.
A \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is seen to be given by $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$. Hence, writing a general element $x \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ as $x=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$, we can see when it is fixed by an element of the Galois group:

- id fixes all $x \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$;
- $\sigma_{2}(x)=\sigma_{2}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a-b \sqrt{2}+c \sqrt{3}-d \sqrt{6} \stackrel{!}{=} x$ if and only if $b=d=0$, that is, $x \in \mathbb{Q}(\sqrt{3})$;
- $\sigma_{3}(x)=a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6} \stackrel{!}{=} x$ if and only if $c=d=0$, that is, $x \in \mathbb{Q}(\sqrt{2})$;
- $\sigma_{2} \circ \sigma_{3}(x)=a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6} \stackrel{!}{=} x$ if and only if $b=c=0$, that is, $x \in \mathbb{Q}(\sqrt{6})$.

Putting all this together, we see that

- $\mathbb{Q}(\sqrt{2}, \sqrt{3})^{\{\mathrm{id}\}}=\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) ;$
- $\mathbb{Q}(\sqrt{2}, \sqrt{3})^{\left\langle\sigma_{2}\right\rangle}=\mathbb{Q}(\sqrt{3}) ;$
- $\mathbb{Q}(\sqrt{2}, \sqrt{3})^{\left\langle\sigma_{3}\right\rangle}=\mathbb{Q}(\sqrt{2}) ;$
- $\mathbb{Q}(\sqrt{2}, \sqrt{3})^{\left\langle\sigma_{2} \circ \sigma_{3}\right\rangle}=\mathbb{Q}(\sqrt{6})$.
- $\mathbb{Q}(\sqrt{2}, \sqrt{3})^{\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})}=\mathbb{Q}$.

3. Let $p>2$ be a prime number and $\zeta:=e^{\frac{2 \pi i}{p}}$. Let $E=\mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E / \mathbb{Q}) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(a) Show that there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ of order 2. What is its generator? [Hint: It is an element of order 2]
(b) Prove that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \subseteq E^{H}$ and that $\left[E: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right] \leqslant 2$.
(c) Deduce that $E^{H}=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$.

Solution: By Assignment 16, Exercise 2, an isomorphism $(\mathbb{Z} / p \mathbb{Z})^{\times} \xrightarrow{\sim} \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is given by $k+p \mathbb{Z} \mapsto\left(\zeta \mapsto \zeta^{k}\right)$ for each $k \in \mathbb{Z}$. Recall that an automorphism of $\mathbb{Q}(\zeta)$ (fixing \mathbb{Q}) is indeed uniquely determined by the image of ζ, which in turn needs to be another root of $\operatorname{irr}(\zeta, \mathbb{Q})=\frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\cdots+X+1$.
(a) By Algebra I, we know that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic of order $p-1$ because $\mathbb{Z} / p \mathbb{Z}$ is a finite field. $p-1$ is divisible by 2 since p is odd. Hence $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ has a unique subgroup of order 2. It is generated by the $\frac{p-1}{2}$-th power of a generator of $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$. Only one element $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ can have order 2 , because two distinct such elements generate distinct subgroups of order 2. We also know that complex conjugation $\sigma: x \mapsto \bar{x}$ belongs to $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ which clearly has order 2 , so that $H=\langle\sigma\rangle$.
(b) As $|\zeta|=1$, we see that $\zeta^{-1}=\bar{\zeta}$, so that σ actually corresponds to the class of $-1 \in(\mathbb{Z} / p \mathbb{Z})^{\times}$.
At any rate,

$$
\sigma\left(\zeta+\zeta^{-1}\right)=\sigma(\zeta)+\sigma\left(\zeta^{-1}\right)=\zeta^{-1}+\zeta
$$

so that $\zeta+\zeta^{-1} \in E^{H}$. As E^{H} is a subfield of E, we can conclude that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \subset E$.
Notice that ζ is a root of $(X-\zeta)\left(X-\zeta^{-1}\right)=X^{2}-\left(\zeta+\zeta^{-1}\right) X+1 \in$ $\mathbb{Q}\left(\zeta+\zeta^{-1}\right)[X]$, so that $\left[E: \mathbb{Q}\left(\zeta+\zeta^{-1}\right] \leqslant 2\right.$.
(c) By Proposition IV.9, $\left[E: E^{H}\right]=|H|=2$. Hence we know that

$$
2 \cdot\left[E^{H}: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right]=\left[E: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right] \leqslant 2
$$

so that $\left[E^{H}: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right]=1$, meaning that $E^{H}=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$.

