
D-MATH Algebra II FS18
Prof. Marc Burger

Solution 23

Galois extensions. Constructions with ruler and compass.

1. Let E/k be a finite field extension, write G := Gal(E/k) and consider an element
α ∈ E. Consider the polynomial

q :=
∏

σ∈G/StabG(α)

(X − σ(α)) ∈ E[X].

Prove that q ∈ EG[X].

Solution: By the orbit stabilizer theorem, the action of σ ∈ G/StabG(α) on α
is well-defined and the σ(α)’s are all distinct. Each τ ∈ G extends to a unique
automorphism τ̃ of E[X] sending X 7→ X. Then,

τ̃(q) = τ̃

 ∏
σ∈G/StabG(α)

(X − σ(α))

 =
∏

σ∈G/StabG(α)

(X − τ(σ(α))) = q,

because τ permutes the σ(α)’s, that is, the elements of the orbit of α. Hence τ
fixes the coefficients of q. By arbitrarity of τ , we conclude that q ∈ EG[X].

2. Let E/k be a finite Galois extension with Galois group G = Gal(E/k) of degree
n = [E : k]. Define the trace T : E −→ E by

T (x) =
∑
σ∈G

σ(x).

One can prove that this map coincides with the trace defined in Assignment 12,
Exercise 7.

(a) Prove that im(T ) ⊆ k and that T is k-linear.

(b) Show that T is not identically zero and deduce that dim(ker(T )) = n − 1.
[Hint: Independence of characters].

(c) Now suppose that Gal(E/k) is cyclic and generated by an automorphism σ.
Consider the linear map τ = σ − idE. Prove that

ker(T ) = im(τ) = {σ(u)− u : u ∈ E}.

Solution:
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(a) Let τ ∈ G. For each x ∈ E,

τ(T (x)) = τ

(∑
σ∈G

σ(x)

)
=
∑
σ∈G

τσ(x) = T (x),

because σ 7→ τσ is a bijection G −→ G. By arbitrarity of τ and x ∈ E, the
image of T is in EG, which coincides with k because E/k is Galois.

In order to prove that T is k-linear, let x, y ∈ E and a ∈ k. Then

T (x+ ay) =
∑
σ∈G

σ(x+ ay) =
∑
σ∈G

(σ(x) + aσ(y)) = T (x) + aT (y).

(b) The map T ∈ Hom(E×, E) is a non-trivial linear combination (with co-
efficients all equal to 1) of the finitely many characters σ ∈ Gal(E/k) ⊂
Hom(E×, E×). Hence T 6= 0. Then the image of T is a non-zero k-linear
subspace of k, which means that im(T ) = k so that dim(im(T )) = 1. Then
by the rank-nullity theorem we conclude that

dim(ker(T )) = n− dim(im(T )) = n− 1.

(c) We notice that ker(τ) = {u ∈ E : σ(u) = u} = EG = k, because σ generates
G so that the elements of E fixed by σ are fixed by the whole G. Again by
the rank-nullity theorem, we obtain

dim(im(τ)) = n− dim(ker(τ)) = n− 1.

As ker(T ) and im(τ) have the same dimension, it suffices to show that one is
contained in the other. We show that im(τ) ⊂ ker(T ): for all x ∈ E,

T (σ(x)− x) =
∑
σ′∈G

σ′(σ(x)− x) =
∑
σ′∈G

σ′σ(x)−
∑
σ′∈G

σ′(x) = T (x)− T (x) = 0.

3. Define the set S ⊂ R2 of constructible points as the smallest subset S of the
Euclidean plane containing O, (1, 0) and such that:

• if A,B,C,D ∈ S and the line through A and B is not parallel to the one
through C and D, then the intersection point is in S;

• if A,B,C,D,E ∈ S, then all points of intersection between the line through
A and B and the circle centered at C with radius equal to d(D,E) are in S.

• if A,B,C,D,E, F ∈ S, then all points of intersection between the circle
centered at C with radius equal to d(D,E) and the circle centered at F with
radius equal to d(A,B) are in S.
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(a) Suppose that the points A,B,C,D,E, F have coordinates in a common field
K ⊂ R. Explain why if a point X can be constructed by performing one of
the two steps above, then its coordinates belong to a field extension K ′/K
such that [K ′ : K] 6 2.

We say that a real number r ∈ R is constructible if the point (r, 0) ∈ R2 is
constructible.

(b) Prove that the point (a, b) ∈ R2 is constructible if and only if a and b are
constructible.

(c) Prove that a real number r ∈ R is constructible if and only if there are field
extensions

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn

such that [Ki : Ki−1] 6 2 and r ∈ Kn.

(d) Prove that the real numbers π, 3
√

2 and cos(20◦) are not constructible. Ex-
plain what this means in terms of classical ruler-and-compass construction
problems. [Hint: What is the degree of Q(z)/Q if z is a constructible number?
You may need the trigonometric identity cos(3θ) = 4 cos3(θ)− 3 cos(θ)].

Solution:

(a) We use some basic high-school geometry. If the point X = (x1, x2) lies on
a line through points with coordinates in K, then the coordinates satisfy a
linear equation

(I) : ax1 + bx2 + c = 0

for some a, b, c ∈ K. More precisely, if X lies on the line passing through
(p1, p2) and (q1, q2), then the equation (p2 − q2)(x1 − p1) = (p1 − q1)(x2 − p2)
holds.

If the point X lies on a circle with center C = (c1, c2) and radius r such
that r2 ∈ k (which is the case if r is the distance between two points with
coordinates in K), such that C has coordinates in k, then the coordinates of
X satisfy a quadratic equation of the form

(II) : x21 + x22 + ux1 + vx2 + w = 0

for some u, v, w ∈ K. In the given situation, the precise equation is (x1 −
c1)

2 + (x2 − x2)2 = r2.

The points obtained in one of the three manners described in the exercise are
solutions of a system of two equations, each of type (I) or (II). The case of
two equations of type (II) falls into the one of one equation of type (I) and
one of type (II), because subtracting two equations of the type (II) one gets
an equation of type (I). Hence we can ignore the intersection of two circles.
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In the case in which we intersect two lines, the coordinates of X satisfy a
system of two linear equations, which by basic linear algebra has a unique
solution in R2 if and only if the relevant matrix in R2,2 has non-zero deter-
minant. Since all the coefficients lie in K, then the solution exists in K as
well. Hence K ′ = K does the job in this case.

In the case in which we intersect one line with a circle we get equations{
ax1 + bx2 = c
x21 + x22 + ux1 + vx2 + w = 0

If a = 0, then b 6= 0 (as the first equation represents a line) so that x2 = c/b ∈
K; then, substituting x2 in the second equation, we see that x1 must be a
root of a degree-2 polynomial with coefficients in K, so that this polynomial
is divisible by irr(x1, K), so that K ′ = K(x1) has degree 2 over K and does
the job. Else, if a 6= 0, we write x1 = (c − bx2)/a ∈ K(x2), substituting
this in the second equation we see that x2 satisfies a degree-2 equation with
coefficients in K, so that K ′ = K(x2) does the job.

(b) The reader is encouraged to make a drawing of the constructions.

We can draw the horizontal axis as the line through O and (1, 0). Intersecting
it with the circle centered in O of radius 1, we realise that (−1, 0) ∈ S.
Intersecting the two circles centered at (−1, 0) and (1, 0) of radius 2, we see
that (0,±

√
2/2) ∈ S, so that connecting those two points we can draw the

vertical axis. Hence, (a, 0) ∈ S if and only if (0, a) ∈ S, because we can
move points from an axis to the other by intersecting those axes with a circle
centered at the origin of radius a.

Hence, if a and b are constructible numbers, then (a, 0) and (0, b) are con-
stractible, and drawing a circle centered at (0, b) with radius a and a circle
centered at (a, 0) of radius b, we see that (a, b) ∈ S.

Conversely, assume that (a, b) ∈ S. As we have drawn the two cartesian axes,
we are left to check that the projection of a point P ∈ S to the line passing
through two points A,B ∈ S can be constructed with rule and compass. This
can be done by intersecting the line through A and B with the circle centered
at P and passing through A, in order to obtain another point A′, such that
P belongs to the axis of the segment AA′. This axis can be drawn by taking
circles centered in A and A′ of radius d(A,A′). Intersecting this axis with
AA′, we obtain the projection of P .

(c) First, we recall that there are methods to replicate and divide equally a seg-
ment by using ruler and compass (in order to divide a segment AB into n
equal parts, consider a point C outside their line—which can be constructed
by intersecting two circles centered in A and B of radius d(A,B)—and repli-
cate n times the segment AC by adding points C1 = C, . . . , Cn on its line,
one after the other; connect Cn with B and draw parallel lines to BCn pass-
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ing through each Cj
1 and intersecting AB into points B1, . . . , Bn = B with

d(Bi, Bi+1) = d(A,B)
n

) the last point with B and draw parallel, so that all ra-
tional numbers are constructible starting with O and (1, 0). By part (b), this
implies that all points with rational coordinates are constructible. By part
(a), we know that the coordinates of a constructible point lie in an extension
which is obtained by iterating quadratic extensions. Again by part (b), this
implies that all constructible numbers belong to such an extension.

Conversely, recall that a quadratic extension in characteristic zero is obtained
by adding a square root. In particular, a real quadratic extension is obtained
by adding a square root of a positive number. This means that in order
to conclude that each real number belonging to an iteration of a quadratic
extension is constructible, it is enough to check that the square root of a
positive constructible number is constructible. This can be done as follow:
given the positive constructible number r, take the points B = (−1, 0) and
A = (r, 0). By intersecting circles of radius r + 1 centered at A and B, we
obtain two points laying on the axis of AB. Drawing this axis and intersecting
it with AB, we find the middle point M of AB. Then we can draw the circle
centered at M with radius d(M,A) = (r + 1)/2 and intersect it with the
vertical axis (drawn in part (b)) in order to get a unique point C = (0, c)
such that c > 0. The triangles BMC and CMA are similar. Hence, the
equation 1/c = c/r holds, implying that c =

√
r.

(d) By part (c), all constructible real numbers are algebraic over Q and they
must have order given by a power of 2. In particular, π is transcendental,
so that it is not constructible. This means that it is not possible to draw a
segment which is as long as a constructible circle.

The number 3
√

2 is a root of the irreducible polynomial X3 − 2, so that any
extension containing it has order divisible by 3, which implies that 3

√
2 is not

constructible. This means that, given the side of a cube, it is not possible
to construct the side of a cube having double volume. This problem was
already considered in ancient Greece: Theon of Smyrna narrates that the
inhabitants of Delos asked their oracle for a way to stop a plague epidemic
and the response they obtained was that they should have replaced the altar
to Apollo, which was a cube, with a new one with the same shape and double
the volume.

Finally, we know that 1/2 = cos(3 · 20◦) = 4 cos3(20◦) − 3 cos(20◦), so that
20◦ is a root of the polynomial 8X3− 6X − 1 ∈ Q[X], which is easily seen to
be irreducible (e.g., by noticing that it has no rational root), so that we can
conclude in the same way as for 3

√
2 that it is not a constructible number.

This means that the angle 60◦, which is constructible, cannot be divided into
three equal parts by using ruler and compass.

1this can be done by drawing a perpendicular line through the external point as in part (b), and
then its perpendicular through the same point, in a similar way.
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