Solution 24

Symmetric functions. Galois correspondence.

1. Let $f=X^{3}-2 \in \mathbb{Q}[X]$ and consider its splitting field E. Recall that $\operatorname{Gal}(E / \mathbb{Q}) \cong$ S_{3}. Write down the lattice of subgroups of S_{3} and the corresponding fixed fields. Which of those are normal?
Solution: The polynomial f has roots $z_{1}=\sqrt[3]{2}, z_{2}=\sqrt[3]{2} \omega$ and $z_{3}=\sqrt[3]{2} \omega^{2}$, for $\omega=e^{\frac{2 \pi i}{3}}$. The identification $\operatorname{Gal}(E / \mathbb{Q}) \cong S_{3}$ is given by $\sigma\left(z_{i}\right)=z_{\sigma(i)}$ for $\sigma \in S_{3}$. One can determine the image of ω under σ as

$$
\sigma(\omega)=\frac{\sigma\left(z_{2}\right)}{\sigma\left(z_{1}\right)}=\frac{z_{\sigma(2)}}{z_{\sigma(1)}}=\omega^{\sigma(2)-\sigma(1)} .
$$

The subgroups of S_{3} are given by $1, S_{3}$ itself, $A_{3}=\left\langle\left(\begin{array}{ll}1 & 2\end{array} 3\right)\right\rangle$ and the three nonnormal subgroups $H_{i}=\langle(j k)\rangle$ for each choice of $\{i, j, k\}=\{1,2,3\}$. The only containments are given by $1 \leqslant H_{i} \leqslant S_{3}$ and $1 \leqslant A_{3} \unlhd S_{3}$.

By construction, we see that H_{i} fixes z_{i} for each $i \in\{1,2,3\}$, so that $\mathbb{Q}\left(z_{i}\right) \subset E^{H_{i}}$. Since $\left[E: \mathbb{Q}\left(z_{i}\right)\right]=2=\left|H_{i}\right|=\left[E: E^{H_{i}}\right]$, we can conclude that $E^{H_{i}}=\mathbb{Q}\left(z_{i}\right)$.
According to the correspondence, the only intermediate Galois extension is given by $E^{A_{3}} / \mathbb{Q}$, which is also the unique extension of degree 2 . Since $\mathbb{Q}(\omega) / \mathbb{Q}$ is a degree-2 field extension (the minimal polynomial of ω being $X^{2}+X+1 \in \mathbb{Q}[X]$), we must have $E^{A_{3}}=\mathbb{Q}(\omega)$. One could also directly check that A_{3} fixes ω (and conclude by comparing the degrees of the extensions), if for $\tau=(123)$, a generator of A_{3}, one computes

$$
\tau(\omega)=\omega^{\tau(2)-\tau(1)}=\omega^{3-2}=\omega .
$$

2. Let k be a field with $\operatorname{char}(k) \neq 2$ and $n \geqslant 5$ an integer. Consider the field extension

$$
E=k\left(Y_{1}, \ldots, Y_{n}\right) / k\left(e_{1}, \ldots, e_{n}\right)=K
$$

where $e_{j} \in k\left[Y_{1}, \ldots, Y_{n}\right]$ is, for each integer $1 \leqslant j \leqslant n$, the j-th elementary symmetric polynomial, so that $\operatorname{Gal}(E / K)=S_{n}$. Let $E / L / K$ be the unique intermediate non-trivial Galois extension. Find a polynomial $f \in K[X]$ whose splitting field is L / K. [Hint: What is $\operatorname{Gal}(E / L)$? And $\operatorname{deg}(f)$?]
Solution: Let $H=\operatorname{Gal}(E / L)$. By Galois correspondence $L=E^{H}$ and $H \unlhd S_{n}$ with $H \neq 1$ and $H \neq S_{n}$. Then $H \cap A_{n} \unlhd A_{n}$, which is a simple group as $n \geqslant 5$, so that either $H \cap A_{n}=A_{n}$ or $H \cap A_{n}=1$. In the first case, $A_{n} \leqslant H \leqslant G$ and since $2=\left[S_{n}: A_{n}\right]=\left[S_{n}: H\right]\left[H: A_{n}\right]$ we can conclude that either $H=A_{n}$ or $H=S_{n}$. In the second case, notice that $A_{n} \triangleleft H A_{n} \triangleleft S_{n}$, so that either $H=1$ or $H A_{n}=S_{n}$ (because $H A_{n}$ is properly bigger than A_{n}). In the latter situation, by the second isomorphism theorem for groups (or by the proof of Assignment 8, Exercise 5(b)) we conclude that $|H|=2$, so that H contains the identity and a product of an odd number of disjoint 2-cycles. In particular, H is not normal in S_{n} in this case, as there are other permutations of same cycle type in S_{n}. The only valid possibility is $\operatorname{Gal}(E / L)=H=A_{n}$.
Hence $L=E^{A_{n}}$, so that $[E: L]=\left|A_{n}\right|$ and $[L: K]=\left|S_{n}\right| /\left|A_{n}\right|=2$. Hence L / K a quadratic extension, so that it can be the splitting field of $f \in K[X]$ only if $\operatorname{deg}(f)=2$.
Getting inspired by Exercise 3, we define $\Delta(f)=\prod_{i<j}\left(Y_{i}-Y_{j}\right) \in E$ and notice that $\sigma(\Delta(f))=\operatorname{sgn}(\sigma) \Delta(f)$ for each $\sigma \in S_{n}$. This implies that $\Delta(f) \in E^{A_{n}}=L \backslash K$ and that $D(f):=\Delta(f)^{2} \in K$ (since $\operatorname{char}(K)=2$, so that $\operatorname{sgn}(\sigma)=1$ if and only if $\left.\sigma \in A_{n}\right)$. Hence $f=X^{2}-\prod_{i<j}\left(Y_{i}-Y_{j}\right)^{2}$ does the job.
3. Let k be a field and $f \in k[X]$ a polynomial with distinct roots and $E=\operatorname{Sf}(f)$. Write $R(f)=\left\{z_{1}, \ldots, z_{n}\right\}$ to fix an embedding $\operatorname{Gal}(E / k) \subset S_{n}$. Define the discriminant of f as

$$
D(f)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2}
$$

(a) Assume that $\operatorname{char}(k) \neq 2$. Prove that $D(f)$ is a square in k if and only if $\operatorname{Gal}(E / k) \subset A_{n}$.
(b) Show that $\mathbb{F}_{4} / \mathbb{F}_{2}$ is a counterexample in characteristic 2 to the previous part.

Solution:

(a) Let $\Delta(f)=\prod_{i<j}\left(z_{i}-z_{j}\right)$. The square roots of $D(f)$ in E are given by $\pm \Delta(f)$, so that $D(f)$ is a square in k if and only if $\Delta(f) \in k$. For $\sigma \in \operatorname{Gal}(E / k)$, we have $\sigma(\Delta(f))=\operatorname{sgn}(\sigma) \Delta(f)$ (since the z_{i} 's are distinct) so that $\Delta(f)$ is fixed by σ if and only if $\sigma \in A_{n}$ (because $\operatorname{char}(K) \neq 2$).

Since E / k is Galois, $\Delta(f)$ lies in k if and only if it is fixed by all $\sigma \in \operatorname{Gal}(E / k)$, which by what we just showed is equivalent to $\operatorname{Gal}(E / k) \subset A_{n}$.
(b) For $k=\mathbb{F}_{2}$ and $E=\mathbb{F}_{4}$, we have $\operatorname{Gal}(E / k)=S_{2}=\langle\sigma\rangle$, where σ is the Frobenius automorphism of \mathbb{F}_{4}. We can write $E=k(\alpha)$ where α is a root of $f=X^{2}+X+1 \in k[X]$, so that $E=\operatorname{Sf}(f)$. The other root of f is $\alpha+1$. Then $\Delta(f)=(\alpha+1)-\alpha=1 \in \mathbb{F}_{2}$, so that $D(f)$ is a square in \mathbb{F}_{2}, although $\operatorname{Gal}(E / k)$ does not lie inside A_{2}.
4. (Artin-Schreier theory) Let k be a field of characteristic $p>0$ and $c \in k$ be such that $c \neq y^{p}-y$ for every $y \in k$. Let $f=X^{p}-X-c \in k[X]$ and $E=\operatorname{Sf}(f)$.
(a) Let $x \in R(f)$. Prove that $x+\lambda \in R(f)$ for each $\lambda \in \mathbb{F}_{p}$.
(b) Deduce: f is irreducible, $E=k(x)$ and $\operatorname{Gal}(E / k)$ is cyclic of order p.

We know want to show that all p-cyclic field extensions in characteristic p are of this form. Let E / k be a finite Galois extension with $\operatorname{char}(k)=p$ and $\operatorname{Gal}(E / k)=\langle\sigma\rangle$ cyclic of order p.
(c) Show that there exists $x \in E$ such that $\sigma(x)=x+1$ [Hint: Assignment 23, Exercise 2(c)]
(d) Prove that $E=k(x)$ and that there exists $c \in k$ such that $\operatorname{irr}(E / k)=$ $X^{p}-X-c$. [Hint: Consider $\prod_{\lambda=0}^{p-1}\left(X-\sigma^{\lambda}(x)\right)$. How can you prove that $\left.x^{p}-x \in k ?\right]$

Solution:

(a) For each $\lambda \in \mathbb{F}_{p}$, the equality $\lambda^{p}=\lambda$ holds. Hence

$$
f(x+\lambda)=(x+\lambda)^{p}-(x+\lambda)-c=f(x)+\lambda^{p}-\lambda=0 .
$$

(b) Notice that $x \notin k$, since f has no root in k by assumption. Since the $x+\lambda$ are p distinct elements for $\lambda \in \mathbb{F}_{p}$, the polynomial f factors as

$$
f=\prod_{\lambda \in \mathbb{F}_{p}}(X-(x+\lambda)) .
$$

A factor g of f in $E[X]$ is given, up to a multiplicative constant, by taking a subset $S \subset \mathbb{F}_{p}$ and setting

$$
g=\prod_{\lambda \in S}(X-(x+\lambda))
$$

The term of degree $|S|-1$ of g has coefficient $(-1)^{|S|}\left(|S| x+\sum_{\lambda \in S} \lambda\right)$. As $\mathbb{F}_{p} \subset k$, this coefficient lies in k if and only if $|S| x \in k$, which is the case if
and only $|S|=0$ or $|S|=p$. This means that $g \in k[X]$ if and only if it is a unit or a constant multiple of f. Hence f is irreducible.
Clearly, $k(x)$ contains all the roots of f by part (a), so that $E=k(x)$. Hence $|\operatorname{Gal}(E / k)|=[E: k]=[k(x): k]=p$ by irreducibility of f, so that $\operatorname{Gal}(E / k)$ is cyclic.
(c) By Assignment 23, Exercise 2(c), we know that the image of the k-linear endomorphism of E sending $x \mapsto \sigma(x)-x$ coincides with the kernel of the trace. But

$$
T(1)=\sum_{\tau \in \operatorname{Gal}(E / k)} \tau(1)=\sum_{\tau \in \operatorname{Gal}(E / k)} 1=p \cdot 1=0,
$$

so that $1 \in \operatorname{ker}(T)$ can be expressed as $1=\sigma(x)-x$ for some $x \in E$, as desired.
(d) The elements of $\operatorname{Gal}(E / k)$ are given by the powers σ^{λ}, for $\lambda \in\{0, \ldots, p-1\}$. By the previous part, $\sigma^{\lambda}(x)=x+\lambda$, so that the $\sigma^{\lambda}(x)$ are all distinct. Hence, Assignment 23, Exercise 1 tells us that

$$
f:=\prod_{\lambda=0}^{p-1}\left(X-\sigma^{\lambda}(x)\right)=\prod_{\lambda=0}^{p-1}(X-(x+\lambda)) \in E^{\operatorname{Gal}(E / k)}[X]=k[X]
$$

This polynomial is seen to be irreducible in the same way as in part (b). Hence $f=\operatorname{irr}(x, k)$ and $[k(x): k]=p=[E: k]$, which in turn implies that $k(x)=E$.
In order to conclude, let $c=x^{p}-x$, so that x is a root of $X^{p}-X-c$. In order to conclude, it is enough to show that $c \in k=E^{\operatorname{Gal}(E / k)}$, which can be done by checking that $\sigma(c)=c$, since σ is a generator of $\operatorname{Gal}(E / k)$. This is an easy computation:

$$
\sigma(c)=\sigma\left(x^{p}-x\right)=\sigma(x)^{p}-\sigma(x)=(x+1)^{p}-(x+1)=x^{p}-x=c
$$

5. Let L / k be a finite field extension and fix an embedding $L \subset \bar{k}$.
(a) Show: there exists a minimal normal finite field extension E / k containing L.
(b) Show: if L / k is separable, then E / k is Galois (it is called the Galois closure of $L / k)$.

Solution:

(a) Since L / k is a finite extension, it is finitely generated. Write $L=k\left(x_{1}, \ldots, x_{n}\right)$ and let $f_{i}=\operatorname{irr}\left(x_{i}, k\right)$. Let $E=\operatorname{Sf}\left(\prod f_{i}\right)$. This is a finite normal extension of k containing L. Moreover, by Assignment 19, Exercise 4, we know that a normal extension of k containing x_{i} must contain all roots of $\operatorname{irr}\left(x_{i}, k\right)$ as well, so that E is minimal by construction.
(b) The polynomials f_{i} in part (a), and hence their product $\prod f_{i}$, are separable. Hence $E=\operatorname{Sf}\left(\prod f_{i}\right)$ is a Galois extension of k.
6. We say that a field extension L / k is simple if there exists $x \in L$ such that $L=k(x)$. In this exercise we want to prove the following result:
Lemma. A finite field extensions L / k is simple if and only if there are finitely many intermediate field extensions $L / F / k$.
(a) Suppose that $L=k(x)$ for some $x \in L$ and let $L / F / k$ be an intermediate extension. Let $f=\operatorname{irr}(x, F)$ and $F_{0} \subset F$ the extension of k generated by the coefficients of f. Prove that $F=F_{0}$. [Hint: Notice that $F(x)=F_{0}(x)$ and compare degrees]
(b) Conclude that if L / k is simple, then it contains only finitely many intermediate subextensions [Hint: In part (a), f divides $\operatorname{irr}(x, k)$]
(c) Let k be an infinite field and V a k-vector space. Suppose that V_{1}, \ldots, V_{m} are finitely many vector subspaces of V, with $V_{i} \neq V$ for each i. Show that $\bigcup_{i=1}^{m} V_{i} \neq V$ [Hint: Induction on n]
(d) Suppose that a finite field extension L / k contains only finitely many intermediate extensions. Prove that L / k is simple.

Solution:

(a) The polynomial f is irreducible in $F[X]$, hence also in $F_{0}[X]$. This means that $[F(x): F]=\operatorname{deg}(f)=\left[F_{0}(x): F_{0}\right]$. But

$$
L=k(x) \subset F_{0}(x) \subset F(x) \subset L
$$

implies that $F_{0}(x)=F(x)$, so that

$$
\left[F: F_{0}\right]=\frac{\left[F(x): F_{0}\right]}{[F(x): F]}=\frac{\left[F_{0}(x): F_{0}\right]}{[F(x): F]}=1 .
$$

(b) By part (a), if $L=k(x) / F / k$ is an intermediate extension, then F is generated by the coefficients of the $\operatorname{irr}(x, F)$, which is a proper monic factor of $\operatorname{irr}(x, k)$ in $L[X]$. Since $\operatorname{irr}(x, k)$ has only finitely many proper monic factors, there are only finitely many intermediate extensions $L / F / k$.
(c) (See also Chambert-Loir, A Field Guide to Algebra, Lemma 3.3.4). This is proved by induction on n, the case $n=1$ being trivial. We may suppose that $V \neq \bigcup_{i=1}^{n-1} V_{i}$ and take $x \in V \backslash \bigcup_{i=1}^{n-1} V_{i}$. If $x \notin V_{n}$, we are done. Else, let $y \in V \backslash V_{n}$. We want to prove that there exists $t \in k$ such that $x+t y \notin \bigcup_{i=1}^{n} V_{i}$.
Suppose that $x+t y$ and $x+t^{\prime} y$ belong to the same V_{i}, for $t \neq t^{\prime}$. Then $y \in V_{i}$ and $x=(x+t y)-t y \in V_{i}$ as well. For every i, one of those conclusions
contradicts the assumptions (as $x \notin \bigcup_{i=1}^{n-1} V_{i}$ and $y \notin V_{n}$). Hence $x+t y$ belongs to V_{i} for at most one value of $t \in k$, implying that $x+t y \in \bigcup_{i=1}^{n-1} V_{i}$ for at most n values of $t \in k$. As k is infinite, there exists $t \in k$ such that $x+t y \notin \bigcup_{i=1}^{n-1} V_{i}$, which concludes the proof.
(d) Suppose that k is finite. Then L is finite, too. By Algebra I, we know that L^{\times}is a cyclic group, so that for x a generator of L^{\times}, we know that $k(x)$ contains the whole L^{\times}, implying that $L=k(x)$.
From now on, we suppose that L / k is an infinite extension. Since there are only finitely many intermediate extensions, there are finitely many intermediate simple extensions L_{i} / k for some index $i \in I$. As each $u \in L$ lies in the simple extension $k(u)$, we know that $L=\cup_{i \in I} L_{i}$. Then, by part (c), we must have $L=L_{i}$ for some $i \in I$, so that L / k is itself a simple extension.
7. (Primitive Element Theorem) Let L / k be a finite separable field extension. Prove that there exists $x \in L$ such that $L=k(x)$.
Solution: By Exercise $5, L / k$ is contained into a finite Galois extension E / k. By the Galois correspondence, the intermediate field extensions of E / k are parametrized by the subgroups of the finite group $\operatorname{Gal}(E / k)$, so that they are finitely many. This implies that L / k has only finitely many intermediate field extensions, too. By Exercise $6, L / k$ is a simple field extension, that is, there exists $x \in L$ such that $L=k(x)$.
8. Prove that the field extension $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$, where s and t are formal variables, contains infinitely many intermediate extensions.
Solution: We have a tower of field extensions $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t\right) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$. Notice that $\mathbb{F}_{p}(s, t)=\mathbb{F}_{p}\left(s^{p}, t\right)(s)$ and that s is a root of the polynomial $(X-s)^{p}=$ $X^{p}-s^{p} \in \mathbb{F}_{p}\left(s^{p}, t\right)[X]$, which in turn is irreducible because its monic proper factors in $\mathbb{F}_{p}(s, t)[X]$ have constant term not lying in $\mathbb{F}_{p}\left(s^{p}, t\right)$, we obtain $\left[\mathbb{F}_{p}(s, t)\right.$: $\left.\mathbb{F}_{p}\left(s^{p}, t\right)\right]=p$. Similarly, we see that $X^{p}-t^{p}$ is the minimal polynomial of t over $\mathbb{F}_{p}\left(s^{p}, t^{p}\right)$, so that $\left[\mathbb{F}_{p}\left(s^{p}, t\right): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=p$. All in all we obtain

$$
\left[\mathbb{F}_{p}(s, t): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=\left[\mathbb{F}_{p}(s, t): \mathbb{F}_{p}\left(s^{p}, t\right)\right]\left[\mathbb{F}_{p}\left(s^{p}, t\right): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=p^{2}
$$

We prove that $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$ is not simple. Suppose by contradiction that $\mathbb{F}_{p}(s, t)=\mathbb{F}_{p}\left(s^{p}, t^{p}\right)(f)$ for some $f \in \mathbb{F}_{p}(s, t)$. As the Frobenius map $x \mapsto$ x^{p} is a field endomorphism of $\mathbb{F}_{p}(s, t)$, we realise that $f^{p} \in \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$. Hence $\operatorname{irr}\left(f, \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right) \mid X^{p}-f^{p}$, so that

$$
p^{2}=\left[\mathbb{F}_{p}(s, t): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=\left[\mathbb{F}_{p}\left(s^{p}, t^{p}\right)(f): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right] \leqslant p,
$$

a contradiction. Hence $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$ is not simple.
By Exercise $6, \mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$ contains infinitely many intermediate field extensions.

