D-MATH Algebra 11 FS18

Prof. Marc Burger .
Solution 24

SYMMETRIC FUNCTIONS. (GALOIS CORRESPONDENCE.

1. Let f = X3?—2 € Q[X] and consider its splitting field E. Recall that Gal(E/Q) =
S3. Write down the lattice of subgroups of S5 and the corresponding fixed fields.
Which of those are normal?

Solution: The polynomial f has roots z; = \3/5, zy = V2w and z3 = \3’/§w2, for
w = €5, The identification Gal(E/Q) 2 S is given by o(z) = Zo(s) for o € Ss.
One can determine the image of w under o as

o(w) = o(z) _ Fe@ _ W @—o(1)

o(z1)  2)

The subgroups of S5 are given by 1, Ss itself, A3 = ((1 2 3)) and the three non-
normal subgroups H; = ((j k)) for each choice of {i,j,k} = {1,2,3}. The only
containments are given by 1 < H; < S; and 1 < A3 <.55.
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By construction, we see that H; fixes z; for each i € {1,2, 3}, so that Q(z;) C E*i.
Since [E : Q(z;)] = 2 = |H;| = [E : E¥i], we can conclude that EHi = Q(z;).

According to the correspondence, the only intermediate Galois extension is given
by E“/Q, which is also the unique extension of degree 2. Since Q(w)/Q is a
degree-2 field extension (the minimal polynomial of w being X? + X +1 € Q[X]),
we must have E4* = Q(w). One could also directly check that Az fixes w (and
conclude by comparing the degrees of the extensions), if for 7 = (1 2 3), a generator
of Az, one computes



2. Let k be a field with char(k) # 2 and n > 5 an integer. Consider the field extension
E=kYy,....,Y,)/k(er,...,en) =K,

where e; € k[Y1,....Y,] is, for each integer 1 < j < n, the j-th elementary
symmetric polynomial, so that Gal(E/K) = S,,. Let E/L/K be the unique inter-
mediate non-trivial Galois extension. Find a polynomial f € K|[X]| whose splitting

field is L/ K. [Hint: What is Gal(£/L)? And deg(f)?]

Solution: Let H = Gal(E/L). By Galois correspondence L = E# and H < 5,
with H # 1 and H # S,,. Then HN A,, < A,,, which is a simple group as n > 5, so
that either HN A,, = A,, or HN A,, = 1. In the first case, A,, < H < G and since
2=1[S,: A, =[S, : H|[H : A,] we can conclude that either H = A, or H = S,.
In the second case, notice that A,, < HA, <S5, so that either H =1or HA,, = S,
(because H A, is properly bigger than A,). In the latter situation, by the second
isomorphism theorem for groups (or by the proof of Assignment 8, Exercise 5(b))
we conclude that |H| = 2, so that H contains the identity and a product of an odd
number of disjoint 2-cycles. In particular, H is not normal in 5, in this case, as
there are other permutations of same cycle type in S,,. The only valid possibility
is Gal(E/L) = H = A,.
Hence L = E4" so that [E : L] = |A,| and [L : K] = |S,|/|A,| = 2. Hence L/K
a quadratic extension, so that it can be the splitting field of f € K[X] only if
deg(f) = 2.
Getting inspired by Exercise 3, we define A(f) = [[,_;(Y;—Y}) € E and notice that
a(A(f)) = sgn(o)A(f) for each o € S,,. This implies that A(f) € E4» = L N K
and that D(f) := A(f)? € K (since char(K) = 2, so that sgn(c) = 1 if and only
if o € A,). Hence f = X? —[[,_;(Y; = Y;)? does the job.
3. Let k be a field and f € k[X] a polynomial with distinct roots and E = Sf(f).
Write R(f) = {z1,...,2,} to fix an embedding Gal(E/k) C S,,. Define the dis-

criminant of f as

1<j

(a) Assume that char(k) # 2. Prove that D(f) is a square in k if and only if
Gal(E/k) C A,.

(b) Show that F,/F5 is a counterexample in characteristic 2 to the previous part.
Solution:

(a) Let A(f) = [];;(zi—z;). The square roots of D(f) in E are given by £A(f),
so that D(f) is a square in k if and only if A(f) € k. For o € Gal(E/k), we
have o(A(f)) = sgn(a)A(f) (since the z;’s are distinct) so that A(f) is fixed
by o if and only if o € A, (because char(K) # 2).
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Since E/k is Galois, A(f) lies in k if and only if it is fixed by all o € Gal(E/k),
which by what we just showed is equivalent to Gal(E/k) C A,.

(b) For k = Fy and E = Fy, we have Gal(E/k) = Sy = (o), where o is the
Frobenius automorphism of F,. We can write £ = k(a) where « is a root of
f=X?+X+1 € k[X], so that E = Sf(f). The other root of f is o + 1.
Then A(f) = (a+1) —a =1 € Fy, so that D(f) is a square in [y, although
Gal(E/k) does not lie inside As.

4. (Artin-Schreier theory) Let k be a field of characteristic p > 0 and ¢ € k be such
that ¢ # y? —y for every y € k. Let f = X? — X —c € k[X]| and E = S{(f).
(a) Let x € R(f). Prove that x + XA € R(f) for each A € F,,.
(b) Deduce: f is irreducible, E' = k(x) and Gal(E/k) is cyclic of order p.
We know want to show that all p-cyclic field extensions in characteristic p are of this

form. Let E/k be a finite Galois extension with char(k) = p and Gal(E/k) = (o)
cyclic of order p.

(c) Show that there exists x € E such that o(z) = x + 1 [Hint: Assignment 23,
Exercise 2(c)]

(d) Prove that E = k(z) and that there exists ¢ € k such that irr(E/k) =
X? — X —c. [Hint: Consider [[{_;(X — o*(x)). How can you prove that
P —x € k7|

Solution:

(a) For each A € F,, the equality \? = X holds. Hence
fa+N)=@@+N—(z+A)—c=f(z) + N = A=0.

(b) Notice that x € k, since f has no root in k by assumption. Since the z + A
are p distinct elements for A € [F,, the polynomial f factors as

=TI =+ ).

A€EF,,

A factor g of f in E[X] is given, up to a multiplicative constant, by taking a
subset S C F,, and setting

g=J(xX=(@+N)

A€S

The term of degree |S| — 1 of g has coefficient (—1)I*1(|S|z + >0, g A). As
[F, C k, this coefficient lies in k if and only if |S|z € k, which is the case if



and only |S| = 0 or |S| = p. This means that g € k[X] if and only if it is a
unit or a constant multiple of f. Hence f is irreducible.
Clearly, k(x) contains all the roots of f by part (a), so that E = k(z). Hence
|Gal(E/k)| = [E : k] = [k(x) : k] = p by irreducibility of f, so that Gal(E/k)
is cyclic.

(c) By Assignment 23, Exercise 2(c), we know that the image of the k-linear
endomorphism of E sending = — o(x) — x coincides with the kernel of the

trace. But
T1)= Y )= > 1=p-1=0,

TeGal(E/k) TeGal(E/k)

so that 1 € ker(T') can be expressed as 1 = o(z) — x for some z € E, as
desired.

(d) The elements of Gal(E/k) are given by the powers o, for A € {0,...,p—1}.
By the previous part, o*(x) = z+ ), so that the o () are all distinct. Hence,
Assignment 23, Exercise 1 tells us that

f= 1:[()( —o*z)) = 1:[()( — (24 \) € ECEM[X] = k[X]

This polynomial is seen to be irreducible in the same way as in part (b).
Hence f = irr(z, k) and [k(x) : k| = p = [E : k], which in turn implies that
k(x) = E.

In order to conclude, let ¢ = 2P — z, so that z is a root of X? — X —¢. In
order to conclude, it is enough to show that ¢ € k = ES(E/%)  which can be
done by checking that o(c) = ¢, since ¢ is a generator of Gal(E/k). This is
an easy computation:

olc)=c(@®—x)=c(@)P —0ox)=(x+ 1P —(z+1)=aP —z=c
5. Let L/k be a finite field extension and fix an embedding L C k.

(a) Show: there exists a minimal normal finite field extension E/k containing L.

(b) Show: if L/k is separable, then E/k is Galois (it is called the Galois closure
of L/k).

Solution:

(a) Since L/k is a finite extension, it is finitely generated. Write L = k(x1,...,z,)
and let f; = irr(z;, k). Let E = Sf(]] f;). This is a finite normal extension
of k containing L. Moreover, by Assignment 19, Exercise 4, we know that
a normal extension of k containing x; must contain all roots of irr(z;, k) as
well, so that £ is minimal by construction.
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(b) The polynomials f; in part (a), and hence their product [] f;, are separable.
Hence E = S{([] f) is a Galois extension of k.

6. We say that a field extension L/k is simple if there exists z € L such that L = k(z).
In this exercise we want to prove the following result:

Lemma. A finite field extensions L/k is simple if and only if there are finitely
many intermediate field extensions L/F/k.

(a) Suppose that L = k(z) for some x € L and let L/F/k be an intermediate
extension. Let f =irr(z, F) and Fy C F the extension of k generated by the
coefficients of f. Prove that F = Fy. [Hint: Notice that F(z) = Fy(r) and
compare degrees]

(b) Conclude that if L/k is simple, then it contains only finitely many interme-
diate subextensions [Hint: In part (a), f divides irr(z, k)]

(c) Let k be an infinite field and V' a k-vector space. Suppose that Vi,...,V,,
are finitely many vector subspaces of V', with V; # V for each i. Show that
U~ Vi # V [Hint: Induction on n]

(d) Suppose that a finite field extension L/k contains only finitely many inter-
mediate extensions. Prove that L/k is simple.

Solution:

(a) The polynomial f is irreducible in F[X], hence also in Fy[X]. This means
that [F'(z) : F] = deg(f) = [Fo(x) : Fo). But

L =Fk(x)C Fy(x) C F(z) C L
implies that Fy(x) = F(z), so that

[F(z) : Fp _ [Fo(x) : Fo)

[F : Fo] = =1.

(b) By part (a), if L = k(z)/F/k is an intermediate extension, then F'is generated
by the coefficients of the irr(x, F'), which is a proper monic factor of irr(x, k)
in L[X]. Since irr(z, k) has only finitely many proper monic factors, there
are only finitely many intermediate extensions L/F/k.

(c) (See also Chambert-Loir, A Field Guide to Algebra, Lemma 3.3.4). This is
proved by induction on n, the case n = 1 being trivial. We may suppose
that V # /' V; and take z € V.~ U/ Vi. If 2 ¢ V,,, we are done.
Else, let y € V . V,,. We want to prove that there exists ¢ € k such that
z+ty ¢ Uy Vie
Suppose that x +ty and x +t'y belong to the same V;, for t # t'. Then y € V;
and x = (z + ty) —ty € V; as well. For every i, one of those conclusions

b}



contradicts the assumptions (as = ¢ U;:ll Viand y ¢ V,,). Hence z + ty
belongs to V; for at most one value of ¢t € k, implying that x + ty € U?:_ll Vi
for at most n values of t € k. As k is infinite, there exists ¢ € k such that
r+ty & U?;ll V;, which concludes the proof.

(d) Suppose that k is finite. Then L is finite, too. By Algebra I, we know that

L* is a cyclic group, so that for x a generator of L*, we know that k(z)
contains the whole L*, implying that L = k(z).
From now on, we suppose that L/k is an infinite extension. Since there are
only finitely many intermediate extensions, there are finitely many interme-
diate simple extensions L;/k for some index ¢ € I. As each u € L lies in the
simple extension k(u), we know that L = U;c;L;. Then, by part (c), we must
have L = L; for some i € I, so that L/k is itself a simple extension.

7. (Primitive Element Theorem) Let L/k be a finite separable field extension. Prove
that there exists x € L such that L = k(z).

Solution: By Exercise 5, L/k is contained into a finite Galois extension F/k. By
the Galois correspondence, the intermediate field extensions of E/k are parametrized
by the subgroups of the finite group Gal(E/k), so that they are finitely many. This
implies that L/k has only finitely many intermediate field extensions, too. By Ex-
ercise 6, L/k is a simple field extension, that is, there exists x € L such that
L = k(z).

8. Prove that the field extension F, (s, t)/F,(s”, t?), where s and t are formal variables,
contains infinitely many intermediate extensions.

Solution: We have a tower of field extensions F,(s,t)/F,(s*,t)/F,(s*,t*). Notice
that F,(s,t) = F,(s?,t)(s) and that s is a root of the polynomial (X — s)P =
XP — sP € F,(s,t)[X], which in turn is irreducible because its monic proper
factors in I, (s, ¢)[X] have constant term not lying in F,(s”, ), we obtain [F,(s,t) :
F,(s?,t)] = p. Similarly, we see that X? — ¢? is the minimal polynomial of ¢ over
F,(s?,t?), so that [[F,(s?,t) : F,(s?,t?)] = p. All in all we obtain

[Fp(s,t) : Fp(s”, )] = [Fy(s,8) : Fp(s”, )] [Fp(s”, 8) : Fp(s”,8")] = P’
We prove that F,(s,t)/F,(s?,t?) is not simple. Suppose by contradiction that
F,(s,t) = F,(s*,t*)(f) for some f € F,(s,t). As the Frobenius map =
2P is a field endomorphism of F,(s,t), we realise that f? € F,(s?,t?). Hence
irr(f, Fp(sP,t2))| XP — fP, so that
p* = [Fp(s,t) : Fp(s”,17)] = [Fy(s”, ) (f) : Fp(s”, )] < p,
a contradiction. Hence F,(s,)/F,(s?,t*) is not simple.

By Exercise 6, F,(s,t)/F,(s?, ") contains infinitely many intermediate field exten-
sions.



