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Prof. Marc Burger

Solution 24

Symmetric functions. Galois correspondence.

1. Let f = X3−2 ∈ Q[X] and consider its splitting field E. Recall that Gal(E/Q) ∼=
S3. Write down the lattice of subgroups of S3 and the corresponding fixed fields.
Which of those are normal?

Solution: The polynomial f has roots z1 = 3
√

2, z2 = 3
√

2ω and z3 = 3
√

2ω2, for
ω = e

2πi
3 . The identification Gal(E/Q) ∼= S3 is given by σ(zi) = zσ(i) for σ ∈ S3.

One can determine the image of ω under σ as

σ(ω) =
σ(z2)

σ(z1)
=
zσ(2)
zσ(1)

= ωσ(2)−σ(1).

The subgroups of S3 are given by 1, S3 itself, A3 = 〈(1 2 3)〉 and the three non-
normal subgroups Hi = 〈(j k)〉 for each choice of {i, j, k} = {1, 2, 3}. The only
containments are given by 1 6 Hi 6 S3 and 1 6 A3 E S3.
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By construction, we see that Hi fixes zi for each i ∈ {1, 2, 3}, so that Q(zi) ⊂ EHi .
Since [E : Q(zi)] = 2 = |Hi| = [E : EHi ], we can conclude that EHi = Q(zi).

According to the correspondence, the only intermediate Galois extension is given
by EA3/Q, which is also the unique extension of degree 2. Since Q(ω)/Q is a
degree-2 field extension (the minimal polynomial of ω being X2 +X + 1 ∈ Q[X]),
we must have EA3 = Q(ω). One could also directly check that A3 fixes ω (and
conclude by comparing the degrees of the extensions), if for τ = (1 2 3), a generator
of A3, one computes

τ(ω) = ωτ(2)−τ(1) = ω3−2 = ω.
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2. Let k be a field with char(k) 6= 2 and n > 5 an integer. Consider the field extension

E = k(Y1, . . . , Yn)/k(e1, . . . , en) = K,

where ej ∈ k[Y1, . . . , Yn] is, for each integer 1 6 j 6 n, the j-th elementary
symmetric polynomial, so that Gal(E/K) = Sn. Let E/L/K be the unique inter-
mediate non-trivial Galois extension. Find a polynomial f ∈ K[X] whose splitting
field is L/K. [Hint: What is Gal(E/L)? And deg(f)?]

Solution: Let H = Gal(E/L). By Galois correspondence L = EH and H E Sn
with H 6= 1 and H 6= Sn. Then H ∩AnEAn, which is a simple group as n > 5, so
that either H ∩An = An or H ∩An = 1. In the first case, An 6 H 6 G and since
2 = [Sn : An] = [Sn : H][H : An] we can conclude that either H = An or H = Sn.
In the second case, notice that AnCHAnCSn, so that either H = 1 or HAn = Sn
(because HAn is properly bigger than An). In the latter situation, by the second
isomorphism theorem for groups (or by the proof of Assignment 8, Exercise 5(b))
we conclude that |H| = 2, so that H contains the identity and a product of an odd
number of disjoint 2-cycles. In particular, H is not normal in Sn in this case, as
there are other permutations of same cycle type in Sn. The only valid possibility
is Gal(E/L) = H = An.

Hence L = EAn , so that [E : L] = |An| and [L : K] = |Sn|/|An| = 2. Hence L/K
a quadratic extension, so that it can be the splitting field of f ∈ K[X] only if
deg(f) = 2.

Getting inspired by Exercise 3, we define ∆(f) =
∏

i<j(Yi−Yj) ∈ E and notice that

σ(∆(f)) = sgn(σ)∆(f) for each σ ∈ Sn. This implies that ∆(f) ∈ EAn = L rK
and that D(f) := ∆(f)2 ∈ K (since char(K) = 2, so that sgn(σ) = 1 if and only
if σ ∈ An). Hence f = X2 −

∏
i<j(Yi − Yj)2 does the job.

3. Let k be a field and f ∈ k[X] a polynomial with distinct roots and E = Sf(f).
Write R(f) = {z1, . . . , zn} to fix an embedding Gal(E/k) ⊂ Sn. Define the dis-
criminant of f as

D(f) =
∏
i<j

(zi − zj)2.

(a) Assume that char(k) 6= 2. Prove that D(f) is a square in k if and only if
Gal(E/k) ⊂ An.

(b) Show that F4/F2 is a counterexample in characteristic 2 to the previous part.

Solution:

(a) Let ∆(f) =
∏

i<j(zi−zj). The square roots of D(f) in E are given by ±∆(f),
so that D(f) is a square in k if and only if ∆(f) ∈ k. For σ ∈ Gal(E/k), we
have σ(∆(f)) = sgn(σ)∆(f) (since the zi’s are distinct) so that ∆(f) is fixed
by σ if and only if σ ∈ An (because char(K) 6= 2).
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Since E/k is Galois, ∆(f) lies in k if and only if it is fixed by all σ ∈ Gal(E/k),
which by what we just showed is equivalent to Gal(E/k) ⊂ An.

(b) For k = F2 and E = F4, we have Gal(E/k) = S2 = 〈σ〉, where σ is the
Frobenius automorphism of F4. We can write E = k(α) where α is a root of
f = X2 + X + 1 ∈ k[X], so that E = Sf(f). The other root of f is α + 1.
Then ∆(f) = (α+ 1)− α = 1 ∈ F2, so that D(f) is a square in F2, although
Gal(E/k) does not lie inside A2.

4. (Artin-Schreier theory) Let k be a field of characteristic p > 0 and c ∈ k be such
that c 6= yp − y for every y ∈ k. Let f = Xp −X − c ∈ k[X] and E = Sf(f).

(a) Let x ∈ R(f). Prove that x+ λ ∈ R(f) for each λ ∈ Fp.
(b) Deduce: f is irreducible, E = k(x) and Gal(E/k) is cyclic of order p.

We know want to show that all p-cyclic field extensions in characteristic p are of this
form. Let E/k be a finite Galois extension with char(k) = p and Gal(E/k) = 〈σ〉
cyclic of order p.

(c) Show that there exists x ∈ E such that σ(x) = x+ 1 [Hint: Assignment 23,
Exercise 2(c)]

(d) Prove that E = k(x) and that there exists c ∈ k such that irr(E/k) =
Xp − X − c. [Hint: Consider

∏p−1
λ=0(X − σλ(x)). How can you prove that

xp − x ∈ k?]

Solution:

(a) For each λ ∈ Fp, the equality λp = λ holds. Hence

f(x+ λ) = (x+ λ)p − (x+ λ)− c = f(x) + λp − λ = 0.

(b) Notice that x 6∈ k, since f has no root in k by assumption. Since the x + λ
are p distinct elements for λ ∈ Fp, the polynomial f factors as

f =
∏
λ∈Fp

(X − (x+ λ)).

A factor g of f in E[X] is given, up to a multiplicative constant, by taking a
subset S ⊂ Fp and setting

g =
∏
λ∈S

(X − (x+ λ)).

The term of degree |S| − 1 of g has coefficient (−1)|S|(|S|x +
∑

λ∈S λ). As
Fp ⊂ k, this coefficient lies in k if and only if |S|x ∈ k, which is the case if
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and only |S| = 0 or |S| = p. This means that g ∈ k[X] if and only if it is a
unit or a constant multiple of f . Hence f is irreducible.

Clearly, k(x) contains all the roots of f by part (a), so that E = k(x). Hence
|Gal(E/k)| = [E : k] = [k(x) : k] = p by irreducibility of f , so that Gal(E/k)
is cyclic.

(c) By Assignment 23, Exercise 2(c), we know that the image of the k-linear
endomorphism of E sending x 7→ σ(x) − x coincides with the kernel of the
trace. But

T (1) =
∑

τ∈Gal(E/k)

τ(1) =
∑

τ∈Gal(E/k)

1 = p · 1 = 0,

so that 1 ∈ ker(T ) can be expressed as 1 = σ(x) − x for some x ∈ E, as
desired.

(d) The elements of Gal(E/k) are given by the powers σλ, for λ ∈ {0, . . . , p− 1}.
By the previous part, σλ(x) = x+λ, so that the σλ(x) are all distinct. Hence,
Assignment 23, Exercise 1 tells us that

f :=

p−1∏
λ=0

(X − σλ(x)) =

p−1∏
λ=0

(X − (x+ λ)) ∈ EGal(E/k)[X] = k[X]

This polynomial is seen to be irreducible in the same way as in part (b).
Hence f = irr(x, k) and [k(x) : k] = p = [E : k], which in turn implies that
k(x) = E.

In order to conclude, let c = xp − x, so that x is a root of Xp − X − c. In
order to conclude, it is enough to show that c ∈ k = EGal(E/k), which can be
done by checking that σ(c) = c, since σ is a generator of Gal(E/k). This is
an easy computation:

σ(c) = σ(xp − x) = σ(x)p − σ(x) = (x+ 1)p − (x+ 1) = xp − x = c

5. Let L/k be a finite field extension and fix an embedding L ⊂ k.

(a) Show: there exists a minimal normal finite field extension E/k containing L.

(b) Show: if L/k is separable, then E/k is Galois (it is called the Galois closure
of L/k).

Solution:

(a) Since L/k is a finite extension, it is finitely generated. Write L = k(x1, . . . , xn)
and let fi = irr(xi, k). Let E = Sf(

∏
fi). This is a finite normal extension

of k containing L. Moreover, by Assignment 19, Exercise 4, we know that
a normal extension of k containing xi must contain all roots of irr(xi, k) as
well, so that E is minimal by construction.
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(b) The polynomials fi in part (a), and hence their product
∏
fi, are separable.

Hence E = Sf(
∏
fi) is a Galois extension of k.

6. We say that a field extension L/k is simple if there exists x ∈ L such that L = k(x).
In this exercise we want to prove the following result:

Lemma. A finite field extensions L/k is simple if and only if there are finitely
many intermediate field extensions L/F/k.

(a) Suppose that L = k(x) for some x ∈ L and let L/F/k be an intermediate
extension. Let f = irr(x, F ) and F0 ⊂ F the extension of k generated by the
coefficients of f . Prove that F = F0. [Hint: Notice that F (x) = F0(x) and
compare degrees]

(b) Conclude that if L/k is simple, then it contains only finitely many interme-
diate subextensions [Hint: In part (a), f divides irr(x, k)]

(c) Let k be an infinite field and V a k-vector space. Suppose that V1, . . . , Vm
are finitely many vector subspaces of V , with Vi 6= V for each i. Show that⋃m
i=1 Vi 6= V [Hint: Induction on n]

(d) Suppose that a finite field extension L/k contains only finitely many inter-
mediate extensions. Prove that L/k is simple.

Solution:

(a) The polynomial f is irreducible in F [X], hence also in F0[X]. This means
that [F (x) : F ] = deg(f) = [F0(x) : F0]. But

L = k(x) ⊂ F0(x) ⊂ F (x) ⊂ L

implies that F0(x) = F (x), so that

[F : F0] =
[F (x) : F0]

[F (x) : F ]
=

[F0(x) : F0]

[F (x) : F ]
= 1.

(b) By part (a), if L = k(x)/F/k is an intermediate extension, then F is generated
by the coefficients of the irr(x, F ), which is a proper monic factor of irr(x, k)
in L[X]. Since irr(x, k) has only finitely many proper monic factors, there
are only finitely many intermediate extensions L/F/k.

(c) (See also Chambert-Loir, A Field Guide to Algebra, Lemma 3.3.4). This is
proved by induction on n, the case n = 1 being trivial. We may suppose
that V 6=

⋃n−1
i=1 Vi and take x ∈ V r

⋃n−1
i=1 Vi. If x 6∈ Vn, we are done.

Else, let y ∈ V r Vn. We want to prove that there exists t ∈ k such that
x+ ty 6∈

⋃n
i=1 Vi.

Suppose that x+ ty and x+ t′y belong to the same Vi, for t 6= t′. Then y ∈ Vi
and x = (x + ty) − ty ∈ Vi as well. For every i, one of those conclusions
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contradicts the assumptions (as x 6∈
⋃n−1
i=1 Vi and y 6∈ Vn). Hence x + ty

belongs to Vi for at most one value of t ∈ k, implying that x + ty ∈
⋃n−1
i=1 Vi

for at most n values of t ∈ k. As k is infinite, there exists t ∈ k such that
x+ ty 6∈

⋃n−1
i=1 Vi, which concludes the proof.

(d) Suppose that k is finite. Then L is finite, too. By Algebra I, we know that
L× is a cyclic group, so that for x a generator of L×, we know that k(x)
contains the whole L×, implying that L = k(x).

From now on, we suppose that L/k is an infinite extension. Since there are
only finitely many intermediate extensions, there are finitely many interme-
diate simple extensions Li/k for some index i ∈ I. As each u ∈ L lies in the
simple extension k(u), we know that L = ∪i∈ILi. Then, by part (c), we must
have L = Li for some i ∈ I, so that L/k is itself a simple extension.

7. (Primitive Element Theorem) Let L/k be a finite separable field extension. Prove
that there exists x ∈ L such that L = k(x).

Solution: By Exercise 5, L/k is contained into a finite Galois extension E/k. By
the Galois correspondence, the intermediate field extensions of E/k are parametrized
by the subgroups of the finite group Gal(E/k), so that they are finitely many. This
implies that L/k has only finitely many intermediate field extensions, too. By Ex-
ercise 6, L/k is a simple field extension, that is, there exists x ∈ L such that
L = k(x).

8. Prove that the field extension Fp(s, t)/Fp(sp, tp), where s and t are formal variables,
contains infinitely many intermediate extensions.

Solution: We have a tower of field extensions Fp(s, t)/Fp(sp, t)/Fp(sp, tp). Notice
that Fp(s, t) = Fp(sp, t)(s) and that s is a root of the polynomial (X − s)p =
Xp − sp ∈ Fp(sp, t)[X], which in turn is irreducible because its monic proper
factors in Fp(s, t)[X] have constant term not lying in Fp(sp, t), we obtain [Fp(s, t) :
Fp(sp, t)] = p. Similarly, we see that Xp − tp is the minimal polynomial of t over
Fp(sp, tp), so that [Fp(sp, t) : Fp(sp, tp)] = p. All in all we obtain

[Fp(s, t) : Fp(sp, tp)] = [Fp(s, t) : Fp(sp, t)][Fp(sp, t) : Fp(sp, tp)] = p2.

We prove that Fp(s, t)/Fp(sp, tp) is not simple. Suppose by contradiction that
Fp(s, t) = Fp(sp, tp)(f) for some f ∈ Fp(s, t). As the Frobenius map x 7→
xp is a field endomorphism of Fp(s, t), we realise that fp ∈ Fp(sp, tp). Hence
irr(f,Fp(sp, tp))|Xp − fp, so that

p2 = [Fp(s, t) : Fp(sp, tp)] = [Fp(sp, tp)(f) : Fp(sp, tp)] 6 p,

a contradiction. Hence Fp(s, t)/Fp(sp, tp) is not simple.

By Exercise 6, Fp(s, t)/Fp(sp, tp) contains infinitely many intermediate field exten-
sions.
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