D-MATH Algebra 11 FS18

Prof. Marc Burger .
Solution 25

(GALOIS CORRESPONDENCE. SOLVABILITY BY RADICALS.

1. In class, we stated the following result:

Proposition. Let k be a field of characteristic 0 and E/k a finite Galois extension
with solvable Gal(E/k). Then E is contained in a radical extension of k.

In order to prove this result, we do an induction on |Gal(E/k)| = [E : k]. In the
case E # k we take a normal subgroup N < Gal(E/k) of prime index p (using
Assignment 21, Exercise 3) and define £* as the splitting field of X? — 1 € k[X].

(a) Prove that k* = k(w) for some root w of X? — 1 € k[X]. Define E* := E(w).

(b) Assume that k* = k. Prove that EV /k is a pure extension and conclude.

(c) Suppose now that k* # k. Show that E*/k* is a Galois extension and that
Gal(E*/k*) injects into Gal(E/k).

(d) Deduce that Gal(E*/k*) is solvable and that E*/k* is contained in a radical
field extension M /k*.

(e) Explain why M /k is radical as well and conclude the proof of the Lemma.

Solution:

(a) This is clear, because the p-th roots of 1 are all powers of a given non-trivial
one.

(b) We know that [EY : k] = [G : N] = p and that k contains all p-th roots of
1. Then we can apply Corollary IV.24 and obtain that EV = k(u) for some
u € EV such that u? € k. Hence EV /k is a pure extension. Moreover, the
extension E/EY is contained in a radical one by inductive hypothesis, as

[E : K]
p

and the subgroup Gal(E/E"Y) of the solvable group Gal(E/k) is solvable by
Proposition II1.17. Hence E/k is contained in a radical extension.

(c) Write E = Sf(f) for some f € k[X]. Since E* = E(w), we know that E* =
SE((XP —1)f) is a Galois extension of k and hence a Galois extension of k*.
We are then in position of using Assignment 19, Exercise 3 to conclude that
there exists an injective group homomorphism Gal(E*/k*) — Gal(E/k)
given by restriction of automorphisms.

[E: EN] = <[E: K]
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(d) Gal(E*/k*) is isomorphic to a subgroup of Gal(E/k). This subgroup is solv-
able by Proposition II1.17. Hence Gal(E*/k*) is solvable as well. The proof
in the case in which the base field contains non-trivial p-th roots of 1 was
done in (a), so that E*/k* is contained in a radical extension M /k*.

(e) The extension k*/k is pure by definition. Hence M/k is radical. Since it
contains E/k, we are done.

2. Let p be an odd prime number. Let ¢ = ¢+ €Cand E = Q(¢). Recall that
Gal(E/Q) = F). For a € F, define the Legendre symbol

(g) B { 1 if ais a square in

P —1 if a is a not square in F'.

Define the complex number

~E0)e

a€Fy

(a) Show that the map F) — {1} sending a > (%) is a group homomorphism.

(b) Prove that
(Q) = ap;l(mod D),

p
and that this determines (%) € {£1} uniquely.
(c) Show that <’71) = 1if and only if p =1 (mod 4).
(d) For b € F), let 0, € Gal(E/Q) be the automorphism o(¢) = ¢*. Prove the
equality oy(7) = (%) T

(e) Prove that Q(7)/Q is the unique quadratic intermediate extension of E/Q.

We now want to determine the extension Q(7) by computing 72 explicitly.
(f) Let c € F¥. Show that
ZQG(HC): -1 ife#p-1
p—1 ifc=p-—1
a€Fy

(g) Write

= (G)en

a€F; beFy



(h)

Substituting b = ac with ¢ € F’, deduce that

g ON G

c=1

Conclude: if p = 1 (mod4), then Q(7) = Q(y/p); if p = 3 (mod4), then
Q(7) = Q(i/p).

Solution:

(a)

The group F is cyclic of even order p — 1. Since it is abelian, the map
s:F; — F) sending r — 22 is a group homomorphism. The set of squares
in F is given by S = {s(z), v € F;} = im(s). By the First Isomorphism
Theorem, s induces an isomorphism F)/ker(s) — S. Moreover ker(s) =
{v € Ff : 2* = 1} = {£1} because it contains the roots of the degree-
2 polynomial X? — 1 € F,[X]. Hence S is a subgroup of order 2 of F,
implying that for a,b € F,’ the element ab € F is a square if and only if a
and b are both square or both are not squares. In particular, the given map
is a group homomorphism.

The group F) is the set of roots of X?~! —1 € Fy[X]. Since X?~' —1 =
(X% — 1)()(1%1 +1), we know that precisely 2! elements in a € [ satisfy

a’7 = 1, the others satisfying 'z = 1. fa==0forbc F7, then
o’z = b*"7 = 1. Since by part (a) there are precisely 1%1 squares in F,
we conclude that ¢*2" = —1 € F, when a is not a square. Hence a'r = (%)

(mod p) for each a € F,x.
By part (b),

—1 p—1
p
which is 1 if and only if p — 1 is divisible by 4, that is, if and only if p = 1

(mod 4).

The power ¢ for a € F, is well defined, because (" = 1 for each m € Z.
Clearly, 7 € E by definition. For each b € F7, we compute

-0 (5 0)¢) - £ G- £ 0 ) )

a€lFy a€lFy a€lFy
b b b
-Gz E)e-6)
p <\ p p
a€lFy

in the last step having used the fact that {ba : a € F) '} = F) for each b € F,
which holds because F; is a group.
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(e)

2
By part (d), we see that o,(7%) = <§> 72 = 7% for each b € F,, so that

2 ¢ ESIE/Q = Q. Moreover, 0,(7) # 7 when b is not a square in Fx
(which is the case for half of the elements of F,x), so that 7 ¢ Q. Hence
Q(7)/Q is a quadratic extension.

On the other hand, the Galois group Gal(E/Q) = F is cyclic of even order

p— 1, so it contains precisely one subgroup of index 2 (that is, of order p%l)

Hence, there is precisely one quadratic extension L/Q contained in E (that
is, such that [E : L] = Z31), which is then given by Q(7).

For c=p—1, we get
> ¢ = Y er = S @ - S eyt
a€Fy a€Fy a€Fy a€Fy
Else, 1 +c € FY, so that {a(1 +c¢):a € F;} =F* and
R S P MEE
a€Fy a€Fy a€lFp

. -1 va —
because ¢ is a root of Y 7_ ) X = &=L € Z[X].

Since {ac : ¢ € IF;} = ', we can perform the suggested substitution, as
follows:

T_zz<ab><a+b ZZ( )CaJrac:ZZ( )Ca1+c

a€Fy beFy, acF} ceFy acF} ceFy
c 0 [—1 gy
-Y Y (5) e =2 (5) T e 2 (T o-n-3 (¢
a€Fy c€Fy cE€Fy a€lFy c=1

The above sum reads

-1 -1 =y -1 c -1
*=(5)-(G)-20)-G)-26)-G)r
because (i) attains the values 1 and —1 an equal number of times for ¢ € F.

If p=1 (mod 4), then

T =p,
so that 7 = £,/p and Q(7) = Q(/p) is a quadratic real extension of Q.
Else, p = 3 (mod 4),

2 _
T = =D,

so that 7 = +i,/p and Q(7) = Q(i,/p) is a quadratic imaginary extension of
Q.



