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Solution 25

Galois correspondence. Solvability by radicals.

1. In class, we stated the following result:

Proposition. Let k be a field of characteristic 0 and E/k a finite Galois extension
with solvable Gal(E/k). Then E is contained in a radical extension of k.

In order to prove this result, we do an induction on |Gal(E/k)| = [E : k]. In the
case E 6= k we take a normal subgroup N C Gal(E/k) of prime index p (using
Assignment 21, Exercise 3) and define k∗ as the splitting field of Xp − 1 ∈ k[X].

(a) Prove that k∗ = k(w) for some root w of Xp− 1 ∈ k[X]. Define E∗ := E(w).

(b) Assume that k∗ = k. Prove that EN/k is a pure extension and conclude.

(c) Suppose now that k∗ 6= k. Show that E∗/k∗ is a Galois extension and that
Gal(E∗/k∗) injects into Gal(E/k).

(d) Deduce that Gal(E∗/k∗) is solvable and that E∗/k∗ is contained in a radical
field extension M/k∗.

(e) Explain why M/k is radical as well and conclude the proof of the Lemma.

Solution:

(a) This is clear, because the p-th roots of 1 are all powers of a given non-trivial
one.

(b) We know that [EN : k] = [G : N ] = p and that k contains all p-th roots of
1. Then we can apply Corollary IV.24 and obtain that EN = k(u) for some
u ∈ EN such that up ∈ k. Hence EN/k is a pure extension. Moreover, the
extension E/EN is contained in a radical one by inductive hypothesis, as

[E : EN ] =
[E : k]

p
< [E : k]

and the subgroup Gal(E/EN) of the solvable group Gal(E/k) is solvable by
Proposition III.17. Hence E/k is contained in a radical extension.

(c) Write E = Sf(f) for some f ∈ k[X]. Since E∗ = E(w), we know that E∗ =
Sf((Xp − 1)f) is a Galois extension of k and hence a Galois extension of k∗.
We are then in position of using Assignment 19, Exercise 3 to conclude that
there exists an injective group homomorphism Gal(E∗/k∗) −→ Gal(E/k)
given by restriction of automorphisms.
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(d) Gal(E∗/k∗) is isomorphic to a subgroup of Gal(E/k). This subgroup is solv-
able by Proposition III.17. Hence Gal(E∗/k∗) is solvable as well. The proof
in the case in which the base field contains non-trivial p-th roots of 1 was
done in (a), so that E∗/k∗ is contained in a radical extension M/k∗.

(e) The extension k∗/k is pure by definition. Hence M/k is radical. Since it
contains E/k, we are done.

2. Let p be an odd prime number. Let ζ = e
2πi
p ∈ C and E = Q(ζ). Recall that

Gal(E/Q) ∼= F×p . For a ∈ F×p , define the Legendre symbol(
a

p

)
=

{
1 if a is a square in F×p
−1 if a is a not square in F×p .

Define the complex number

τ =
∑
a∈F×

p

(
a

p

)
ζa.

(a) Show that the map F×p −→ {±1} sending a 7→
(

a
p

)
is a group homomorphism.

(b) Prove that (
a

p

)
≡ a

p−1
2 (mod p),

and that this determines
(

a
p

)
∈ {±1} uniquely.

(c) Show that
(
−1
p

)
= 1 if and only if p ≡ 1 (mod 4).

(d) For b ∈ F×p , let σb ∈ Gal(E/Q) be the automorphism σb(ζ) = ζb. Prove the

equality σb(τ) =
(

b
p

)
· τ .

(e) Prove that Q(τ)/Q is the unique quadratic intermediate extension of E/Q.

We now want to determine the extension Q(τ) by computing τ 2 explicitly.

(f) Let c ∈ F×p . Show that

∑
a∈F×

p

ζa(1+c) =

{
−1 if c 6= p− 1
p− 1 if c = p− 1

(g) Write

τ 2 =
∑
a∈F×

p

∑
b∈F×

p

(
ab

p

)
ζa+b.
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Substituting b = ac with c ∈ F×p , deduce that

τ 2 = −
p−2∑
c=1

(
c

p

)
+

(
−1

p

)
(p− 1).

(h) Conclude: if p ≡ 1 (mod 4), then Q(τ) = Q(
√
p); if p ≡ 3 (mod 4), then

Q(τ) = Q(i
√
p).

Solution:

(a) The group F×p is cyclic of even order p − 1. Since it is abelian, the map
s : F×p −→ F×p sending x 7→ x2 is a group homomorphism. The set of squares
in F×p is given by S = {s(x), x ∈ F×p } = im(s). By the First Isomorphism

Theorem, s induces an isomorphism F×p / ker(s)
∼−→ S. Moreover ker(s) =

{x ∈ F×p : x2 = 1} = {±1} because it contains the roots of the degree-
2 polynomial X2 − 1 ∈ Fp[X]. Hence S is a subgroup of order 2 of F×p ,
implying that for a, b ∈ F×p the element ab ∈ F×p is a square if and only if a
and b are both square or both are not squares. In particular, the given map
is a group homomorphism.

(b) The group F×p is the set of roots of Xp−1 − 1 ∈ Fp[X]. Since Xp−1 − 1 =

(X
p−1
2 − 1)(X

p−1
2 + 1), we know that precisely p−1

2
elements in a ∈ F×p satisfy

a
p−1
2 = 1, the others satisfying a

p−1
2 = −1. If a = b2 for b ∈ F×p , then

a
p−1
2 = b2·

p−1
2 = 1. Since by part (a) there are precisely p−1

2
squares in F×p ,

we conclude that a
p−1
2 = −1 ∈ Fp when a is not a square. Hence a

p−1
2 ≡

(
a
p

)
(mod p) for each a ∈ Fp×.

(c) By part (b), (
−1

p

)
= (−1)

p−1
2 ,

which is 1 if and only if p − 1 is divisible by 4, that is, if and only if p ≡ 1
(mod 4).

(d) The power ζa for a ∈ Fp is well defined, because ζpm = 1 for each m ∈ Z.
Clearly, τ ∈ E by definition. For each b ∈ F×p , we compute

σb(τ) = σb

∑
a∈F×

p

(
a

p

)
ζa

 =
∑
a∈F×

p

(
a

p

)
σb(ζ)a =

∑
a∈F×

p

(
b

p

)(
b

p

)(
a

p

)
ζba

=

(
b

p

) ∑
a∈F×

p

(
ba

p

)
ζba =

(
b

p

)
τ,

in the last step having used the fact that {ba : a ∈ F×p } = F×p for each b ∈ F×p ,
which holds because F×p is a group.
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(e) By part (d), we see that σb(τ
2) =

(
b
p

)2
τ 2 = τ 2 for each b ∈ Fp, so that

τ 2 ∈ EGal(E/Q) = Q. Moreover, σb(τ) 6= τ when b is not a square in F×p
(which is the case for half of the elements of Fp×), so that τ 6∈ Q. Hence
Q(τ)/Q is a quadratic extension.

On the other hand, the Galois group Gal(E/Q) ∼= F×p is cyclic of even order

p− 1, so it contains precisely one subgroup of index 2 (that is, of order p−1
2

).
Hence, there is precisely one quadratic extension L/Q contained in E (that
is, such that [E : L] = p−1

2
), which is then given by Q(τ).

(f) For c = p− 1, we get∑
a∈F×

p

ζa(1+c) =
∑
a∈F×

p

ζap =
∑
a∈F×

p

(ζp)a =
∑
a∈F×

p

1 = p− 1.

Else, 1 + c ∈ F×p , so that {a(1 + c) : a ∈ F×p } = F×p and∑
a∈F×

p

ζa(1+c) =
∑
a∈F×

p

ζa = −1 +
∑
a∈Fp

ζa = −1,

because ζ is a root of
∑p−1

a=0X
a = Xp−1

X−1 ∈ Z[X].

(g) Since {ac : c ∈ F×p } = F×p , we can perform the suggested substitution, as
follows:

τ 2 =
∑
a∈F×

p

∑
b∈F×

p

(
ab

p

)
ζa+b =

∑
a∈F×

p

∑
c∈F×

p

(
a(ac)

p

)
ζa+ac =

∑
a∈F×

p

∑
c∈F×

p

(
a2c

p

)
ζa(1+c)

=
∑
a∈F×

p

∑
c∈F×

p

(
c

p

)
ζa(1+c) =

∑
c∈F×

p

(
c

p

) ∑
a∈F×

p

ζa(1+c) (f)
=

(
−1

p

)
(p− 1)−

p−2∑
c=1

(
c

p

)
(h) The above sum reads

τ 2 =

(
−1

p

)
p−

(
−1

p

)
−

p−2∑
c=1

(
c

p

)
=

(
−1

p

)
p−

∑
c∈F×

p

(
c

p

)
=

(
−1

p

)
p,

because
(

c
p

)
attains the values 1 and −1 an equal number of times for c ∈ F×p .

If p ≡ 1 (mod 4), then

τ 2 = p,

so that τ = ±√p and Q(τ) = Q(
√
p) is a quadratic real extension of Q.

Else, p ≡ 3 (mod 4),

τ 2 = −p,

so that τ = ±i√p and Q(τ) = Q(i
√
p) is a quadratic imaginary extension of

Q.

4


