Solution 25

GALOIS CORRESPONDENCE. SOLVABILITY BY RADICALS.

1. In class, we stated the following result:

Proposition. Let k be a field of characteristic 0 and E/k a finite Galois extension with solvable Gal(E/k). Then E is contained in a radical extension of k.

In order to prove this result, we do an induction on $|\operatorname{Gal}(E/k)| = [E:k]$. In the case $E \neq k$ we take a normal subgroup $N \triangleleft \operatorname{Gal}(E/k)$ of prime index p (using Assignment 21, Exercise 3) and define k^* as the splitting field of $X^p - 1 \in k[X]$.

- (a) Prove that $k^* = k(w)$ for some root w of $X^p 1 \in k[X]$. Define $E^* := E(w)$.
- (b) Assume that $k^* = k$. Prove that E^N/k is a pure extension and conclude.
- (c) Suppose now that $k^* \neq k$. Show that E^*/k^* is a Galois extension and that $\operatorname{Gal}(E^*/k^*)$ injects into $\operatorname{Gal}(E/k)$.
- (d) Deduce that $\operatorname{Gal}(E^*/k^*)$ is solvable and that E^*/k^* is contained in a radical field extension M/k^* .
- (e) Explain why M/k is radical as well and conclude the proof of the Lemma.

Solution:

- (a) This is clear, because the *p*-th roots of 1 are all powers of a given non-trivial one.
- (b) We know that $[E^N : k] = [G : N] = p$ and that k contains all p-th roots of 1. Then we can apply Corollary IV.24 and obtain that $E^N = k(u)$ for some $u \in E^N$ such that $u^p \in k$. Hence E^N/k is a pure extension. Moreover, the extension E/E^N is contained in a radical one by inductive hypothesis, as

$$[E:E^N] = \frac{[E:k]}{p} < [E:k]$$

and the subgroup $\operatorname{Gal}(E/E^N)$ of the solvable group $\operatorname{Gal}(E/k)$ is solvable by Proposition III.17. Hence E/k is contained in a radical extension.

(c) Write E = Sf(f) for some $f \in k[X]$. Since $E^* = E(w)$, we know that $E^* = \text{Sf}((X^p - 1)f)$ is a Galois extension of k and hence a Galois extension of k^* . We are then in position of using Assignment 19, Exercise 3 to conclude that there exists an injective group homomorphism $\text{Gal}(E^*/k^*) \longrightarrow \text{Gal}(E/k)$ given by restriction of automorphisms.

- (d) $\operatorname{Gal}(E^*/k^*)$ is isomorphic to a subgroup of $\operatorname{Gal}(E/k)$. This subgroup is solvable by Proposition III.17. Hence $\operatorname{Gal}(E^*/k^*)$ is solvable as well. The proof in the case in which the base field contains non-trivial *p*-th roots of 1 was done in (a), so that E^*/k^* is contained in a radical extension M/k^* .
- (e) The extension k^*/k is pure by definition. Hence M/k is radical. Since it contains E/k, we are done.
- 2. Let p be an odd prime number. Let $\zeta = e^{\frac{2\pi i}{p}} \in \mathbb{C}$ and $E = \mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E/\mathbb{Q}) \cong \mathbb{F}_p^{\times}$. For $a \in \mathbb{F}_p^{\times}$, define the Legendre symbol

$$\begin{pmatrix} a\\ \overline{p} \end{pmatrix} = \begin{cases} 1 & \text{if } a \text{ is a square in } \mathbb{F}_p^{\times} \\ -1 & \text{if } a \text{ is a not square in } \mathbb{F}_p^{\times} \end{cases}$$

Define the complex number

$$\tau = \sum_{a \in \mathbb{F}_p^{\times}} \left(\frac{a}{p}\right) \zeta^a.$$

- (a) Show that the map $\mathbb{F}_p^{\times} \longrightarrow \{\pm 1\}$ sending $a \mapsto \left(\frac{a}{p}\right)$ is a group homomorphism.
- (b) Prove that

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p},$$

and that this determines $\left(\frac{a}{p}\right) \in \{\pm 1\}$ uniquely.

- (c) Show that $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{4}$.
- (d) For $b \in \mathbb{F}_p^{\times}$, let $\sigma_b \in \operatorname{Gal}(E/\mathbb{Q})$ be the automorphism $\sigma_b(\zeta) = \zeta^b$. Prove the equality $\sigma_b(\tau) = \left(\frac{b}{p}\right) \cdot \tau$.
- (e) Prove that $\mathbb{Q}(\tau)/\mathbb{Q}$ is the unique quadratic intermediate extension of E/\mathbb{Q} .

We now want to determine the extension $\mathbb{Q}(\tau)$ by computing τ^2 explicitly.

(f) Let $c \in \mathbb{F}_p^{\times}$. Show that

$$\sum_{a \in \mathbb{F}_p^{\times}} \zeta^{a(1+c)} = \begin{cases} -1 & \text{if } c \neq p-1\\ p-1 & \text{if } c = p-1 \end{cases}$$

(g) Write

$$\tau^2 = \sum_{a \in \mathbb{F}_p^{\times}} \sum_{b \in \mathbb{F}_p^{\times}} \left(\frac{ab}{p}\right) \zeta^{a+b}.$$

Substituting b = ac with $c \in \mathbb{F}_p^{\times}$, deduce that

$$\tau^2 = -\sum_{c=1}^{p-2} \left(\frac{c}{p}\right) + \left(\frac{-1}{p}\right)(p-1).$$

(h) Conclude: if $p \equiv 1 \pmod{4}$, then $\mathbb{Q}(\tau) = \mathbb{Q}(\sqrt{p})$; if $p \equiv 3 \pmod{4}$, then $\mathbb{Q}(\tau) = \mathbb{Q}(i\sqrt{p})$.

Solution:

- (a) The group \mathbb{F}_p^{\times} is cyclic of even order p-1. Since it is abelian, the map $s: \mathbb{F}_p^{\times} \longrightarrow \mathbb{F}_p^{\times}$ sending $x \mapsto x^2$ is a group homomorphism. The set of squares in \mathbb{F}_p^{\times} is given by $S = \{s(x), x \in \mathbb{F}_p^{\times}\} = \operatorname{im}(s)$. By the First Isomorphism Theorem, s induces an isomorphism $\mathbb{F}_p^{\times}/\ker(s) \xrightarrow{\sim} S$. Moreover $\ker(s) = \{x \in \mathbb{F}_p^{\times} : x^2 = 1\} = \{\pm 1\}$ because it contains the roots of the degree-2 polynomial $X^2 1 \in \mathbb{F}_p[X]$. Hence S is a subgroup of order 2 of \mathbb{F}_p^{\times} , implying that for $a, b \in \mathbb{F}_p^{\times}$ the element $ab \in \mathbb{F}_p^{\times}$ is a square if and only if a and b are both square or both are not squares. In particular, the given map is a group homomorphism.
- (b) The group \mathbb{F}_p^{\times} is the set of roots of $X^{p-1} 1 \in \mathbb{F}_p[X]$. Since $X^{p-1} 1 = (X^{\frac{p-1}{2}} 1)(X^{\frac{p-1}{2}} + 1)$, we know that precisely $\frac{p-1}{2}$ elements in $a \in \mathbb{F}_p^{\times}$ satisfy $a^{\frac{p-1}{2}} = 1$, the others satisfying $a^{\frac{p-1}{2}} = -1$. If $a = b^2$ for $b \in \mathbb{F}_p^{\times}$, then $a^{\frac{p-1}{2}} = b^{2\cdot\frac{p-1}{2}} = 1$. Since by part (a) there are precisely $\frac{p-1}{2}$ squares in \mathbb{F}_p^{\times} , we conclude that $a^{\frac{p-1}{2}} = -1 \in \mathbb{F}_p$ when a is not a square. Hence $a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)$ (mod p) for each $a \in \mathbb{F}_p^{\times}$.
- (c) By part (b),

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}},$$

which is 1 if and only if p - 1 is divisible by 4, that is, if and only if $p \equiv 1 \pmod{4}$.

(d) The power ζ^a for $a \in \mathbb{F}_p$ is well defined, because $\zeta^{pm} = 1$ for each $m \in \mathbb{Z}$. Clearly, $\tau \in E$ by definition. For each $b \in \mathbb{F}_p^{\times}$, we compute

$$\sigma_b(\tau) = \sigma_b \left(\sum_{a \in \mathbb{F}_p^{\times}} \left(\frac{a}{p} \right) \zeta^a \right) = \sum_{a \in \mathbb{F}_p^{\times}} \left(\frac{a}{p} \right) \sigma_b(\zeta)^a = \sum_{a \in \mathbb{F}_p^{\times}} \left(\frac{b}{p} \right) \left(\frac{b}{p} \right) \left(\frac{a}{p} \right) \zeta^{ba}$$
$$= \left(\frac{b}{p} \right) \sum_{a \in \mathbb{F}_p^{\times}} \left(\frac{ba}{p} \right) \zeta^{ba} = \left(\frac{b}{p} \right) \tau,$$

in the last step having used the fact that $\{ba : a \in \mathbb{F}_p^{\times}\} = \mathbb{F}_p^{\times}$ for each $b \in \mathbb{F}_p^{\times}$, which holds because \mathbb{F}_p^{\times} is a group.

(e) By part (d), we see that $\sigma_b(\tau^2) = \left(\frac{b}{p}\right)^2 \tau^2 = \tau^2$ for each $b \in \mathbb{F}_p$, so that $\tau^2 \in E^{\operatorname{Gal}(E/\mathbb{Q})} = \mathbb{Q}$. Moreover, $\sigma_b(\tau) \neq \tau$ when b is not a square in \mathbb{F}_p^{\times} (which is the case for half of the elements of $\mathbb{F}_p \times$), so that $\tau \notin \mathbb{Q}$. Hence $\mathbb{Q}(\tau)/\mathbb{Q}$ is a quadratic extension.

On the other hand, the Galois group $\operatorname{Gal}(E/\mathbb{Q}) \cong \mathbb{F}_p^{\times}$ is cyclic of even order p-1, so it contains precisely one subgroup of index 2 (that is, of order $\frac{p-1}{2}$). Hence, there is precisely one quadratic extension L/\mathbb{Q} contained in E (that is, such that $[E:L] = \frac{p-1}{2}$), which is then given by $\mathbb{Q}(\tau)$.

(f) For c = p - 1, we get

$$\sum_{a \in \mathbb{F}_p^{\times}} \zeta^{a(1+c)} = \sum_{a \in \mathbb{F}_p^{\times}} \zeta^{ap} = \sum_{a \in \mathbb{F}_p^{\times}} (\zeta^p)^a = \sum_{a \in \mathbb{F}_p^{\times}} 1 = p - 1.$$

Else, $1 + c \in \mathbb{F}_p^{\times}$, so that $\{a(1 + c) : a \in \mathbb{F}_p^{\times}\} = \mathbb{F}_p^{\times}$ and

$$\sum_{a \in \mathbb{F}_p^{\times}} \zeta^{a(1+c)} = \sum_{a \in \mathbb{F}_p^{\times}} \zeta^a = -1 + \sum_{a \in \mathbb{F}_p} \zeta^a = -1,$$

because ζ is a root of $\sum_{a=0}^{p-1} X^a = \frac{X^{p-1}}{X^{-1}} \in \mathbb{Z}[X].$

(g) Since $\{ac : c \in \mathbb{F}_p^{\times}\} = \mathbb{F}_p^{\times}$, we can perform the suggested substitution, as follows:

$$\tau^{2} = \sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{b \in \mathbb{F}_{p}^{\times}} \left(\frac{ab}{p}\right) \zeta^{a+b} = \sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}} \left(\frac{a(ac)}{p}\right) \zeta^{a+ac} = \sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}} \left(\frac{a^{2}c}{p}\right) \zeta^{a(1+c)}$$
$$= \sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}} \left(\frac{c}{p}\right) \zeta^{a(1+c)} = \sum_{c \in \mathbb{F}_{p}^{\times}} \left(\frac{c}{p}\right) \sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)} \stackrel{\text{(f)}}{=} \left(\frac{-1}{p}\right) (p-1) - \sum_{c=1}^{p-2} \left(\frac{c}{p}\right) \zeta^{a(1+c)}$$

(h) The above sum reads

$$\tau^2 = \left(\frac{-1}{p}\right)p - \left(\frac{-1}{p}\right) - \sum_{c=1}^{p-2} \left(\frac{c}{p}\right) = \left(\frac{-1}{p}\right)p - \sum_{c\in\mathbb{F}_p^\times} \left(\frac{c}{p}\right) = \left(\frac{-1}{p}\right)p.$$

because $\begin{pmatrix} c \\ p \end{pmatrix}$ attains the values 1 and -1 an equal number of times for $c \in \mathbb{F}_p^{\times}$. If $p \equiv 1 \pmod{4}$, then

$$\tau^2 = p,$$

so that $\tau = \pm \sqrt{p}$ and $\mathbb{Q}(\tau) = \mathbb{Q}(\sqrt{p})$ is a quadratic real extension of \mathbb{Q} . Else, $p \equiv 3 \pmod{4}$,

$$\tau^2 = -p,$$

so that $\tau = \pm i\sqrt{p}$ and $\mathbb{Q}(\tau) = \mathbb{Q}(i\sqrt{p})$ is a quadratic imaginary extension of \mathbb{Q} .