Solution 25

Galois correspondence. Solvability by radicals.

1. In class, we stated the following result:

Proposition. Let k be a field of characteristic 0 and E / k a finite Galois extension with solvable $\operatorname{Gal}(E / k)$. Then E is contained in a radical extension of k.
In order to prove this result, we do an induction on $|\operatorname{Gal}(E / k)|=[E: k]$. In the case $E \neq k$ we take a normal subgroup $N \triangleleft \operatorname{Gal}(E / k)$ of prime index p (using Assignment 21, Exercise 3) and define k^{*} as the splitting field of $X^{p}-1 \in k[X]$.
(a) Prove that $k^{*}=k(w)$ for some root w of $X^{p}-1 \in k[X]$. Define $E^{*}:=E(w)$.
(b) Assume that $k^{*}=k$. Prove that E^{N} / k is a pure extension and conclude.
(c) Suppose now that $k^{*} \neq k$. Show that E^{*} / k^{*} is a Galois extension and that $\operatorname{Gal}\left(E^{*} / k^{*}\right)$ injects into $\operatorname{Gal}(E / k)$.
(d) Deduce that $\operatorname{Gal}\left(E^{*} / k^{*}\right)$ is solvable and that E^{*} / k^{*} is contained in a radical field extension M / k^{*}.
(e) Explain why M / k is radical as well and conclude the proof of the Lemma.

Solution:

(a) This is clear, because the p-th roots of 1 are all powers of a given non-trivial one.
(b) We know that $\left[E^{N}: k\right]=[G: N]=p$ and that k contains all p-th roots of 1. Then we can apply Corollary IV. 24 and obtain that $E^{N}=k(u)$ for some $u \in E^{N}$ such that $u^{p} \in k$. Hence E^{N} / k is a pure extension. Moreover, the extension E / E^{N} is contained in a radical one by inductive hypothesis, as

$$
\left[E: E^{N}\right]=\frac{[E: k]}{p}<[E: k]
$$

and the subgroup $\operatorname{Gal}\left(E / E^{N}\right)$ of the solvable $\operatorname{group} \operatorname{Gal}(E / k)$ is solvable by Proposition III.17. Hence E / k is contained in a radical extension.
(c) Write $E=\operatorname{Sf}(f)$ for some $f \in k[X]$. Since $E^{*}=E(w)$, we know that $E^{*}=$ $\operatorname{Sf}\left(\left(X^{p}-1\right) f\right)$ is a Galois extension of k and hence a Galois extension of k^{*}. We are then in position of using Assignment 19, Exercise 3 to conclude that there exists an injective group homomorphism $\operatorname{Gal}\left(E^{*} / k^{*}\right) \longrightarrow \operatorname{Gal}(E / k)$ given by restriction of automorphisms.
(d) $\operatorname{Gal}\left(E^{*} / k^{*}\right)$ is isomorphic to a subgroup of $\operatorname{Gal}(E / k)$. This subgroup is solvable by Proposition III.17. Hence $\operatorname{Gal}\left(E^{*} / k^{*}\right)$ is solvable as well. The proof in the case in which the base field contains non-trivial p-th roots of 1 was done in (a), so that E^{*} / k^{*} is contained in a radical extension M / k^{*}.
(e) The extension k^{*} / k is pure by definition. Hence M / k is radical. Since it contains E / k, we are done.
2. Let p be an odd prime number. Let $\zeta=e^{\frac{2 \pi i}{p}} \in \mathbb{C}$ and $E=\mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E / \mathbb{Q}) \cong \mathbb{F}_{p}^{\times}$. For $a \in \mathbb{F}_{p}^{\times}$, define the Legendre symbol

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a square in } \mathbb{F}_{p}^{\times} \\ -1 & \text { if } a \text { is a not square in } \mathbb{F}_{p}^{\times} .\end{cases}
$$

Define the complex number

$$
\tau=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \zeta^{a} .
$$

(a) Show that the map $\mathbb{F}_{p}^{\times} \longrightarrow\{ \pm 1\}$ sending $a \mapsto\left(\frac{a}{p}\right)$ is a group homomorphism.
(b) Prove that

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p),
$$

and that this determines $\left(\frac{a}{p}\right) \in\{ \pm 1\}$ uniquely.
(c) Show that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$.
(d) For $b \in \mathbb{F}_{p}^{\times}$, let $\sigma_{b} \in \operatorname{Gal}(E / \mathbb{Q})$ be the automorphism $\sigma_{b}(\zeta)=\zeta^{b}$. Prove the equality $\sigma_{b}(\tau)=\left(\frac{b}{p}\right) \cdot \tau$.
(e) Prove that $\mathbb{Q}(\tau) / \mathbb{Q}$ is the unique quadratic intermediate extension of E / \mathbb{Q}.

We now want to determine the extension $\mathbb{Q}(\tau)$ by computing τ^{2} explicitly.
(f) Let $c \in \mathbb{F}_{p}^{\times}$. Show that

$$
\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)}= \begin{cases}-1 & \text { if } c \neq p-1 \\ p-1 & \text { if } c=p-1\end{cases}
$$

(g) Write

$$
\tau^{2}=\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{b \in \mathbb{F}_{p}^{\times}}\left(\frac{a b}{p}\right) \zeta^{a+b} .
$$

Substituting $b=a c$ with $c \in \mathbb{F}_{p}^{\times}$, deduce that

$$
\tau^{2}=-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)+\left(\frac{-1}{p}\right)(p-1)
$$

(h) Conclude: if $p \equiv 1(\bmod 4)$, then $\mathbb{Q}(\tau)=\mathbb{Q}(\sqrt{p})$; if $p \equiv 3(\bmod 4)$, then $\mathbb{Q}(\tau)=\mathbb{Q}(i \sqrt{p})$.

Solution:

(a) The group \mathbb{F}_{p}^{\times}is cyclic of even order $p-1$. Since it is abelian, the map $s: \mathbb{F}_{p}^{\times} \longrightarrow \mathbb{F}_{p}^{\times}$sending $x \mapsto x^{2}$ is a group homomorphism. The set of squares in \mathbb{F}_{p}^{\times}is given by $S=\left\{s(x), x \in \mathbb{F}_{p}^{\times}\right\}=\operatorname{im}(s)$. By the First Isomorphism Theorem, s induces an isomorphism $\mathbb{F}_{p}^{\times} / \operatorname{ker}(s) \xrightarrow{\sim} S$. Moreover $\operatorname{ker}(s)=$ $\left\{x \in \mathbb{F}_{p}^{\times}: x^{2}=1\right\}=\{ \pm 1\}$ because it contains the roots of the degree2 polynomial $X^{2}-1 \in \mathbb{F}_{p}[X]$. Hence S is a subgroup of order 2 of \mathbb{F}_{p}^{\times}, implying that for $a, b \in \mathbb{F}_{p}^{\times}$the element $a b \in \mathbb{F}_{p}^{\times}$is a square if and only if a and b are both square or both are not squares. In particular, the given map is a group homomorphism.
(b) The group \mathbb{F}_{p}^{\times}is the set of roots of $X^{p-1}-1 \in \mathbb{F}_{p}[X]$. Since $X^{p-1}-1=$ $\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$, we know that precisely $\frac{p-1}{2}$ elements in $a \in \mathbb{F}_{p}^{\times}$satisfy $a^{\frac{p-1}{2}}=1$, the others satisfying $a^{\frac{p-1}{2}}=-1$. If $a=b^{2}$ for $b \in \mathbb{F}_{p}^{\times}$, then $a^{\frac{p-1}{2}}=b^{2 \cdot \frac{p-1}{2}}=1$. Since by part (a) there are precisely $\frac{p-1}{2}$ squares in \mathbb{F}_{p}^{\times}, we conclude that $a^{\frac{p-1}{2}}=-1 \in \mathbb{F}_{p}$ when a is not a square. Hence $a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)$ $(\bmod p)$ for each $a \in \mathbb{F}_{p} \times$.
(c) By part (b),

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}
$$

which is 1 if and only if $p-1$ is divisible by 4 , that is, if and only if $p \equiv 1$ $(\bmod 4)$.
(d) The power ζ^{a} for $a \in \mathbb{F}_{p}$ is well defined, because $\zeta^{p m}=1$ for each $m \in \mathbb{Z}$. Clearly, $\tau \in E$ by definition. For each $b \in \mathbb{F}_{p}^{\times}$, we compute

$$
\begin{aligned}
\sigma_{b}(\tau) & =\sigma_{b}\left(\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \zeta^{a}\right)=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \sigma_{b}(\zeta)^{a}=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{b}{p}\right)\left(\frac{b}{p}\right)\left(\frac{a}{p}\right) \zeta^{b a} \\
& =\left(\frac{b}{p}\right) \sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{b a}{p}\right) \zeta^{b a}=\left(\frac{b}{p}\right) \tau,
\end{aligned}
$$

in the last step having used the fact that $\left\{b a: a \in \mathbb{F}_{p}^{\times}\right\}=\mathbb{F}_{p}^{\times}$for each $b \in \mathbb{F}_{p}^{\times}$, which holds because \mathbb{F}_{p}^{\times}is a group.
(e) By part (d), we see that $\sigma_{b}\left(\tau^{2}\right)=\left(\frac{b}{p}\right)^{2} \tau^{2}=\tau^{2}$ for each $b \in \mathbb{F}_{p}$, so that $\tau^{2} \in E^{\operatorname{Gal}(E / \mathbb{Q})}=\mathbb{Q}$. Moreover, $\sigma_{b}(\tau) \neq \tau$ when b is not a square in \mathbb{F}_{p}^{\times} (which is the case for half of the elements of $\mathbb{F}_{p} \times$), so that $\tau \notin \mathbb{Q}$. Hence $\mathbb{Q}(\tau) / \mathbb{Q}$ is a quadratic extension.
On the other hand, the Galois $\operatorname{group} \operatorname{Gal}(E / \mathbb{Q}) \cong \mathbb{F}_{p}^{\times}$is cyclic of even order $p-1$, so it contains precisely one subgroup of index 2 (that is, of order $\frac{p-1}{2}$). Hence, there is precisely one quadratic extension L / \mathbb{Q} contained in E (that is, such that $[E: L]=\frac{p-1}{2}$), which is then given by $\mathbb{Q}(\tau)$.
(f) For $c=p-1$, we get

$$
\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)}=\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a p}=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\zeta^{p}\right)^{a}=\sum_{a \in \mathbb{F}_{p}^{\times}} 1=p-1 .
$$

Else, $1+c \in \mathbb{F}_{p}^{\times}$, so that $\left\{a(1+c): a \in \mathbb{F}_{p}^{\times}\right\}=\mathbb{F}_{p}^{\times}$and

$$
\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)}=\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a}=-1+\sum_{a \in \mathbb{F}_{p}} \zeta^{a}=-1,
$$

because ζ is a root of $\sum_{a=0}^{p-1} X^{a}=\frac{X^{p}-1}{X-1} \in \mathbb{Z}[X]$.
(g) Since $\left\{a c: c \in \mathbb{F}_{p}^{\times}\right\}=\mathbb{F}_{p}^{\times}$, we can perform the suggested substitution, as follows:

$$
\begin{aligned}
\tau^{2} & =\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{b \in \mathbb{F}_{p}^{\times}}\left(\frac{a b}{p}\right) \zeta^{a+b}=\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{a(a c)}{p}\right) \zeta^{a+a c}=\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{a^{2} c}{p}\right) \zeta^{a(1+c)} \\
& =\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{c}{p}\right) \zeta^{a(1+c)}=\sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{c}{p}\right) \sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)} \stackrel{(\mathrm{f})}{=}\left(\frac{-1}{p}\right)(p-1)-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)
\end{aligned}
$$

(h) The above sum reads

$$
\tau^{2}=\left(\frac{-1}{p}\right) p-\left(\frac{-1}{p}\right)-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)=\left(\frac{-1}{p}\right) p-\sum_{c \in \mathbb{F}_{p}^{\times}}\left(\frac{c}{p}\right)=\left(\frac{-1}{p}\right) p,
$$

because $\left(\frac{c}{p}\right)$ attains the values 1 and -1 an equal number of times for $c \in \mathbb{F}_{p}^{\times}$. If $p \equiv 1(\bmod 4)$, then

$$
\tau^{2}=p
$$

so that $\tau= \pm \sqrt{p}$ and $\mathbb{Q}(\tau)=\mathbb{Q}(\sqrt{p})$ is a quadratic real extension of \mathbb{Q}.
Else, $p \equiv 3(\bmod 4)$,

$$
\tau^{2}=-p,
$$

so that $\tau= \pm i \sqrt{p}$ and $\mathbb{Q}(\tau)=\mathbb{Q}(i \sqrt{p})$ is a quadratic imaginary extension of \mathbb{Q}.

