D-MATH Algebra 11 FS18

Prof. Marc Burger .
Solution 26

CYCLOTOMIC EXTENSIONS.

In the following, ¢ : Zs1 — Zso is the Euler function ¢(n) = card ((Z/nZ)*). For
each integer n > 1, we consider the n-th cyclotomic polynomial

¢, = ] (- ez
a€(Z/nZ)*

1. Prove the following properties of the cyclotomic polynomials p,, € Z[T]

W(T) = T*M o (1) for every integer n > 2.

P

®,(T) =TP '+ ...+ 1 for every prime number p.

O, (T) = ®,(T"") for every prime number p and integer r > 1.
d

Solution:

(a) Clearly, ¢(n) = deg(®,). Write ®,(7) = 3¢ a;77. Then

(n) ¢(n)

1 < . .

TG, (T) — T¥(n) E a; T~ = E ajTSO(")—J € Z[T]
J=0 J=0

is a degree (n) polynomial as well. Notice that, for each a € u, we have

a! € pi,, so that
1
a*™d, (—) =1-0=0.
a

Hence T¢™®, (1) has roots R(T¥™®, (%)) = p, = R(®,) and since they
have the same degree and ®,, has distinct roots they must coincide.

(b) See Assignment 11, Exercise 4.

(c) Since p, is the disjoint union of the set of primitive d-th roots of 1 for each
divisor d|n, we obtain the equality

" —1=]]®aT)

din



This reads, for n = p", as

7 —1=]] .
m=0
Hence, by induction on r,

™ —1 ™" —1 T P — 1 -
P, (T) = = = — ( Til) =o,(T" ).
It 17 -1 TPt 1

m=0 =P

(d) Since 2 and n are coprime by assumption, we know that ¢(2n) = ¢(2)p(n) =
©(n), so that the two given polynomials have the same degree. If ( is a
primitive 2n-th root of 1, then ordcx ((™) = 2, so that (" = —1. In particular,
since n is odd, we get (—()" = —(™ = 1, so that —( is a n-th root of 1. It
must be a primitive n-th root of 1, because if (—()™ = 1 for m < n, then
zeta®™ = (—()*™ = 1 which contradicts the fact that ¢ is a primitive 2n-th
root of 1. Hence R(®,) = {—(,( € R(®y,)}, so that

o,(T)= [ @-0= [] @+9=0"* J[ -T-9

CER(Pn) CER(P2n) CER(P2n)
= (17, (1),

In order to conclude, we need to prove that ¢(2n) is even for n odd. As
already noticed, ¢(2n) = ¢(n) in this case. Decomposing n into a product
of prime powers and using the fact that ¢(ab) = p(a)e(b) when a and b are
coprime!, we see that it is enough to check that o(p") is event for each odd
prime p and r > 1, which is clear from the formula ¢(p") =p" — p

r—1

2. Let p be an odd prime number and r > 2 an integer. We want to prove that there
is an isomorphism of abelian groups

(Z/pZ)* =Z/p" 'L < Z/(p—1)Z.

(a) Explain why the statement is equivalent to proving that (Z/p"Z)* is cyclic.

(b) Prove that there exists g € Z which generates (Z/pZ)* and such that g?~! # 1
mod p? [Hint: Let g be a generator of (Z/pZ)*. Look at (g + p)?~! modulo
p? and eventually replace g with g + p|

(c) Prove inductively that there are integers ki, ko, ..., k._; € Z for which

g’ =14k, ik

!By the Chinese Remainder Theorem, Z/abZ = 7Z/aZ x Z/VZ as rings, so that they have isomorphic
groups of units. Notice that an element (x,y) € Z/aZ x Z/bZ is invertible if and only if both z
and y are invertible, so that we obtain an isomorphism (Z/abZ)* = (Z/aZ)* x (Z/bZ)*. Then

p(ab) = |(Z/abZ)*| = [(Z/aZ)*| - [(Z/0Z)*| = ¢(a)p(b)-
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(d)
(e)
(f)

Deduce that ¢*" "®=) # 1 mod p". Moreover, prove that ord/prz)x(g)
divides p"~1(p — 1).

Suppose that ¢ = 1 mod p" for some integer ¢ > 1 and a proper divisor d
of p — 1. Deduce that ¢¢ = 1 mod p and derive a contradiction.

Conclude that g is a generator of (Z/p"Z)*.

Solution:

(a)

Since p—1 and p" are coprime, the group Z/p"~'Zx7Z/(p—1)Z is isomorphic to
Z/p"~Y(p—1)Z, a cyclic group. Since this group has cardinality p"~!(p—1) =
p—p = (p") = |(Z/p"Z)*|, proving that (Z/p"Z)* is cyclic is enough to
prove the given statement.

As seen in Algebra I, the group F) = (Z/pZ)* is cyclic. Let g € Z be a
representative of a generator of (Z/pZ)*. If g*=! £ 1 mod p?, then we are
done. Else, assume that ¢! = 1 mod p?. Expanding the binomial power
(g +p)P~! as suggested in the hint, we see that

(g+p)Pt=g¢"'+(p—1)g"2p+p°m, forsomem € Z.

Hence (g + p)P~! = g?~!' — ¢?"?p (mod p?). Since ¢! = 1 mod p* by
assumption, we see that
(g+p)P ' =1-g""p,

where p { g so that p t g?~2, so that p* { ¢?"?p and (g + p)»~' # 1 mod p*.
Then g + p satisfies the desired property (it is a generator as well, because it
represents the same class as g in Z/pZ.

For 7 = 1, we know by the previous step that
gl'(p—l) =1+ klpa p'f kl?

because g*' = 1 mod p and ¢" ' t 1 mod p*®. Now suppose that for j > 2
there exists k;_; such that gpj_z(pfl) =1+4kj_1p/ ' and ptk;j_1. Then

gD = (P 0D = (1 P Pk P,
1+ (kjq +pi_1mj)Pj

for some integer m;. In the equality (%) we used the fact that p divides the
binomial coefficients (i) for 0 < k < p. Then k; := kj_1 + p’"'m; is not
divisible by p because k;_1 is not while p|p?'m; as j > 2. This proves the
induction step and concludes the proof.



(d) For j =r — 1, we obtain
gpr72(p_1) _ 1 + kr_]_pr_l

where p { k,_;. This implies that ¢?" ~®~1 % 1 mod p”. This means that the
order of g in (Z/p"Z)* does not divide p"~?(p — 1). On the other hand, this
order divides the cardinality of the group, which is p"~!(p — 1).

(e) Under the given assumption, reducing modulo p and applying Fermat’s little
theorem which asserts that ¢ = g (mod p), we obtain ¢¢ = 1 modulo p,
which is a contradiction with the fact that g is a generator of (Z/pZ)*.

(f) By the previous point, the order of g in (Z/p"Z)*, which is a divisor of
p"1(p — 1) by part (d), is of the form p° - (p — 1). But this order does
not divide p"%(p — 1) by part (d), so the only remaining possibility is that
ordzprzy< (9) = "' (p—1) = |(Z/p"Z)*|. Hence g is a generator of (Z/p"Z)*.

3. Prove that for every integer r > 2 there is an isomorphism of abelian groups
(Z)2"7)* = 7.)27 x Z.]2" 7.
More specifically, show for » > 3 that

(Z)277) = {£1} x {1,5,5%...,5% "'}

Solution: First, we prove that 5 € (Z/2"Z)* has order 2”2 in a way similar to
parts (c) and (d) of Exercise 2. Since

(Z/22) | = o) =2 —2 7 =21 =2,
the order of 5 must be a power of 2. We test the elements 5% as follows:

5=1+2°
=1+2)2=1+22+2" =1+ k2 with2{k, €Z,
57 = (14 k12%)2 = 1+ kg2 + k220 = 1 + ky2! with 21k, € Z.

Iterating this, one can prove that there exist ki, ko, k3,... odd numbers such that
52 =1+ ;221
In particular, for j =7 — 3 and j = r — 2 we obtain

5 =14k 32" %1 (mod 2")
52 =14k 52" =1 (mod 27),



letting us conclude that 5 has order 272 in (Z/2"Z)*, so that H = {1,5,5%...,5% "~1}
is a subgroup of (Z/2"Z)*, of index 2771/2772 = 2.

In order to prove that (Z/2"7Z)* = {£1} x H, it is enough to check that Z/2"Z
is a semidirect product of {£1} and H (see Assignment 21, Exercise 1), because
the action of one subgroup on the other by conjugation is trivial as we are in
an abelian group. In particular, both {£1} and H are normal subgroups. Let
x € {£1} N H. Then x = £1. If x = —1, then —1 = 5* (mod 2") which, reducing
modulo 4, gives —1 = 1 (mod 4), contradiction. Hence x = 1. This proves that
{£1} N H = 1. Moreover, the cardinalities of these two subgroups, multiplied
together, give 271 = |(Z/2"Z)*|, so that by the second isomorphism theorem for
groups we can conclude that {+1}H = (Z/2"7Z)* and by what we observed above,
that

(Z)27Z)* = {1} x H = {1} x {1,5,5%...,5% 1},

. Let n be a positive integer and p { n a prime number. Prove that the irreducible
factors of @, € F,[X] are all distinct and their degree is equal to the order of
p+nZin (Z/nZ)*. [Hint: You may want to prove the following claim: if a is a
root of ®,,, then « is a primitive root of 1.]

Solution: See Notes 26 from the website.

. Let n be a positive integer. Prove that there are infinitely many primes p such
that p = 1 mod n. [Hint: If one such prime p exists for every n, then one can find
a bigger one p’ satisfying p’ = 1 mod (n - p)]

Solution: See Notes 26 from the website.



