Solution 26

Cyclotomic extensions.

In the following, $\varphi: \mathbb{Z}_{\geqslant 1} \longrightarrow \mathbb{Z}_{\geqslant 0}$ is the Euler function $\varphi(n)=\operatorname{card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)$. For each integer $n \geqslant 1$, we consider the n-th cyclotomic polynomial

$$
\Phi_{n}:=\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}}\left(T-e^{\frac{2 \pi i}{n} a}\right) \in \mathbb{Z}[T] .
$$

1. Prove the following properties of the cyclotomic polynomials $\varphi_{n} \in \mathbb{Z}[T]$
(a) $\Phi_{n}(T)=T^{\varphi(n)} \Phi_{n}\left(\frac{1}{T}\right)$ for every integer $n \geqslant 2$.
(b) $\Phi_{p}(T)=T^{p-1}+\cdots+1$ for every prime number p.
(c) $\Phi_{p^{r}}(T)=\Phi_{p}\left(T^{p^{r-1}}\right)$ for every prime number p and integer $r \geqslant 1$.
(d) $\Phi_{2 n}(T)=\Phi_{n}(-T)$ for every odd integer $n \geqslant 1$.

Solution:

(a) Clearly, $\varphi(n)=\operatorname{deg}\left(\Phi_{n}\right)$. Write $\Phi_{n}(T)=\sum_{j=0}^{\varphi(n)} a_{j} T^{j}$. Then

$$
T^{\varphi(n)} \Phi_{n}\left(\frac{1}{T}\right)=T^{\varphi(n)} \sum_{j=0}^{\varphi(n)} a_{j} T^{-j}=\sum_{j=0}^{\varphi(n)} a_{j} T^{\varphi(n)-j} \in \mathbb{Z}[T]
$$

is a degree $\varphi(n)$ polynomial as well. Notice that, for each $a \in \mu_{n}$ we have $a^{-1} \in \mu_{n}$, so that

$$
a^{\varphi(n)} \Phi_{n}\left(\frac{1}{a}\right)=1 \cdot 0=0
$$

Hence $T^{\varphi(n)} \Phi_{n}\left(\frac{1}{T}\right)$ has roots $R\left(T^{\varphi(n)} \Phi_{n}\left(\frac{1}{T}\right)\right)=\mu_{n}=R\left(\Phi_{n}\right)$ and since they have the same degree and Φ_{n} has distinct roots they must coincide.
(b) See Assignment 11, Exercise 4.
(c) Since μ_{n} is the disjoint union of the set of primitive d-th roots of 1 for each divisor $d \mid n$, we obtain the equality

$$
T^{n}-1=\prod_{d \mid n} \Phi_{d}(T) .
$$

This reads, for $n=p^{r}$, as

$$
T^{p^{r}}-1=\prod_{m=0}^{r} \Phi_{p^{m}}
$$

Hence, by induction on r,

$$
\Phi_{p^{r}}(T)=\frac{T^{p^{r}}-1}{\prod_{m=0}^{r-1} \Phi_{p^{m}}}=\frac{T^{p^{r}}-1}{T^{p^{r-1}}-1}=\frac{\left(T^{p^{r-1}}\right)^{p}-1}{T^{p^{r-1}}-1}=\Phi_{p}\left(T^{p^{r-1}}\right) .
$$

(d) Since 2 and n are coprime by assumption, we know that $\varphi(2 n)=\varphi(2) \varphi(n)=$ $\varphi(n)$, so that the two given polynomials have the same degree. If ζ is a primitive $2 n$-th root of 1 , then $\operatorname{ord}_{\mathbb{C}^{\times}}\left(\zeta^{n}\right)=2$, so that $\zeta^{n}=-1$. In particular, since n is odd, we get $(-\zeta)^{n}=-\zeta^{n}=1$, so that $-\zeta$ is a n-th root of 1 . It must be a primitive n-th root of 1 , because if $(-\zeta)^{m}=1$ for $m<n$, then $z^{2 m}$ eta $^{2 m}=(-\zeta)^{2 m}=1$ which contradicts the fact that ζ is a primitive $2 n$-th root of 1 . Hence $R\left(\Phi_{n}\right)=\left\{-\zeta, \zeta \in R\left(\Phi_{2 n}\right)\right\}$, so that

$$
\begin{aligned}
\Phi_{n}(T) & =\prod_{\zeta \in R\left(\Phi_{n}\right)}(T-\zeta)=\prod_{\zeta \in R\left(\Phi_{2 n}\right)}(T+\zeta)=(-1)^{\varphi(2 n)} \prod_{\zeta \in R\left(\Phi_{2 n}\right)}(-T-\zeta) \\
& =(-1)^{\varphi(2 n)} \Phi_{2 n}(-T) .
\end{aligned}
$$

In order to conclude, we need to prove that $\varphi(2 n)$ is even for n odd. As already noticed, $\varphi(2 n)=\varphi(n)$ in this case. Decomposing n into a product of prime powers and using the fact that $\varphi(a b)=\varphi(a) \varphi(b)$ when a and b are coprime ${ }^{1}$, we see that it is enough to check that $\varphi\left(p^{r}\right)$ is event for each odd prime p and $r \geqslant 1$, which is clear from the formula $\varphi\left(p^{r}\right)=p^{r}-p^{r-1}$.
2. Let p be an odd prime number and $r \geqslant 2$ an integer. We want to prove that there is an isomorphism of abelian groups

$$
\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}=\mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z}
$$

(a) Explain why the statement is equivalent to proving that $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is cyclic.
(b) Prove that there exists $g \in \mathbb{Z}$ which generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$and such that $g^{p-1} \not \equiv 1$ $\bmod p^{2}$ [Hint: Let g be a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Look at $(g+p)^{p-1}$ modulo p^{2} and eventually replace g with $g+p$]
(c) Prove inductively that there are integers $k_{1}, k_{2}, \ldots, k_{r-1} \in \mathbb{Z}$ for which

$$
g^{p^{j-1}(p-1)}=1+k_{j} p^{j}, p \nmid k_{j}
$$

[^0](d) Deduce that $g^{p^{r-2}(p-1)} \not \equiv 1 \bmod p^{r}$. Moreover, prove that $\operatorname{ord}_{\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)} \times(g)$ divides $p^{r-1}(p-1)$.
(e) Suppose that $g^{p^{\varepsilon} d} \equiv 1 \bmod p^{r}$ for some integer $\varepsilon \geqslant 1$ and a proper divisor d of $p-1$. Deduce that $g^{d} \equiv 1 \bmod p$ and derive a contradiction.
(f) Conclude that g is a generator of $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$.

Solution:

(a) Since $p-1$ and p^{r} are coprime, the group $\mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z}$ is isomorphic to $\mathbb{Z} / p^{r-1}(p-1) \mathbb{Z}$, a cyclic group. Since this group has cardinality $p^{r-1}(p-1)=$ $p^{r}-p^{r-1}=\varphi\left(p^{r}\right)=\left|\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}\right|$, proving that $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is cyclic is enough to prove the given statement.
(b) As seen in Algebra I, the group $\mathbb{F}_{p}^{\times}=(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic. Let $g \in \mathbb{Z}$ be a representative of a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. If $g^{p-1} \not \equiv 1 \bmod p^{2}$, then we are done. Else, assume that $g^{p-1} \equiv 1 \bmod p^{2}$. Expanding the binomial power $(g+p)^{p-1}$ as suggested in the hint, we see that

$$
(g+p)^{p-1}=g^{p-1}+(p-1) g^{p-2} p+p^{2} m, \quad \text { for some } m \in \mathbb{Z} .
$$

Hence $(g+p)^{p-1} \equiv g^{p-1}-g^{p-2} p\left(\bmod p^{2}\right)$. Since $g^{p-1} \equiv 1 \bmod p^{2}$ by assumption, we see that

$$
(g+p)^{p-1} \equiv 1-g^{p-2} p,
$$

where $p \nmid g$ so that $p \nmid g^{p-2}$, so that $p^{2} \nmid g^{p-2} p$ and $(g+p)^{p-1} \not \equiv 1 \bmod p^{2}$. Then $g+p$ satisfies the desired property (it is a generator as well, because it represents the same class as g in $\mathbb{Z} / p \mathbb{Z}$.
(c) For $j=1$, we know by the previous step that

$$
g^{1 \cdot(p-1)}=1+k_{1} p, p \nmid k_{1},
$$

because $g^{p-1} \equiv 1 \bmod p$ and $g^{p-1} \nmid 1 \bmod p^{2}$. Now suppose that for $j \geqslant 2$ there exists k_{j-1} such that $g^{p^{j-2}(p-1)}=1+k_{j-1} p^{j-1}$ and $p \nmid k_{j-1}$. Then

$$
\begin{aligned}
g^{p^{j-1}(p-1)} & =\left(g^{p^{j-2}(p-1)}\right)^{p}=\left(1+k_{j-1} p^{j-1}\right)^{p} \stackrel{(*)}{=} 1+p \cdot k_{j-1} p^{j-1}+p^{2 j-1} m_{j} \\
& =1+\left(k_{j-1}+p^{j-1} m_{j}\right) p^{j}
\end{aligned}
$$

for some integer m_{j}. In the equality $(*)$ we used the fact that p divides the binomial coefficients $\binom{p}{k}$ for $0<k<p$. Then $k_{j}:=k_{j-1}+p^{j-1} m_{j}$ is not divisible by p because k_{j-1} is not while $p \mid p^{j-1} m_{j}$ as $j \geqslant 2$. This proves the induction step and concludes the proof.
(d) For $j=r-1$, we obtain

$$
g^{p^{r-2}(p-1)}=1+k_{r-1} p^{r-1}
$$

where $p \nmid k_{r-1}$. This implies that $g^{p^{r-2}(p-1)} \not \equiv 1 \bmod p^{r}$. This means that the order of g in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$does not divide $p^{r-2}(p-1)$. On the other hand, this order divides the cardinality of the group, which is $p^{r-1}(p-1)$.
(e) Under the given assumption, reducing modulo p and applying Fermat's little theorem which asserts that $g^{p} \equiv g(\bmod p)$, we obtain $g^{d} \equiv 1$ modulo p, which is a contradiction with the fact that g is a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(f) By the previous point, the order of g in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$, which is a divisor of $p^{r-1}(p-1)$ by part (d), is of the form $p^{\varepsilon} \cdot(p-1)$. But this order does not divide $p^{r-2}(p-1)$ by part (d), so the only remaining possibility is that $\operatorname{ord}_{\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)} \times(g)=p^{r-1}(p-1)=\left|\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}\right|$. Hence g is a generator of $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$.
3. Prove that for every integer $r \geqslant 2$ there is an isomorphism of abelian groups

$$
\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times}=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{r-2} \mathbb{Z}
$$

More specifically, show for $r \geqslant 3$ that

$$
\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times} \cong\{ \pm 1\} \times\left\{1,5,5^{2} \ldots, 5^{2^{r-2}-1}\right\}
$$

Solution: First, we prove that $5 \in\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times}$has order 2^{r-2} in a way similar to parts (c) and (d) of Exercise 2. Since

$$
\left|\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times}\right|=\varphi\left(2^{r}\right)=2^{r}-2^{r-1}=2^{r-1}(2-1)=2^{r-1}
$$

the order of 5 must be a power of 2 . We test the elements $5^{2^{l}}$ as follows:

$$
\begin{aligned}
5 & =1+2^{2} \\
5^{2} & =\left(1+2^{2}\right)^{2}=1+2^{3}+2^{4}=1+k_{1} 2^{3} \text { with } 2 \nmid k_{1} \in \mathbb{Z}, \\
5^{2^{2}} & =\left(1+k_{1} 2^{3}\right)^{2}=1+k_{1} 2^{4}+k_{1}^{2} 2^{6}=1+k_{2} 2^{4} \text { with } 2 \nmid k_{2} \in \mathbb{Z} .
\end{aligned}
$$

Iterating this, one can prove that there exist $k_{1}, k_{2}, k_{3}, \ldots$ odd numbers such that

$$
5^{2^{j}}=1+k_{j} 2^{2+j}
$$

In particular, for $j=r-3$ and $j=r-2$ we obtain

$$
\begin{aligned}
& 5^{2^{r-3}}=1+k_{r-3} 2^{r-1} \not \equiv 1\left(\bmod 2^{r}\right) \\
& 5^{2^{r-2}}=1+k_{r-2} 2^{r} \equiv 1\left(\bmod 2^{r}\right)
\end{aligned}
$$

letting us conclude that 5 has order 2^{r-2} in $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times}$, so that $H=\left\{1,5,5^{2} \ldots, 5^{2^{r-2}-1}\right\}$ is a subgroup of $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times}$, of index $2^{r-1} / 2^{r-2}=2$.
In order to prove that $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times} \cong\{ \pm 1\} \times H$, it is enough to check that $\mathbb{Z} / 2^{r} \mathbb{Z}$ is a semidirect product of $\{ \pm 1\}$ and H (see Assignment 21, Exercise 1), because the action of one subgroup on the other by conjugation is trivial as we are in an abelian group. In particular, both $\{ \pm 1\}$ and H are normal subgroups. Let $x \in\{ \pm 1\} \cap H$. Then $x= \pm 1$. If $x=-1$, then $-1 \equiv 5^{a}\left(\bmod 2^{r}\right)$ which, reducing modulo 4 , gives $-1 \equiv 1(\bmod 4)$, contradiction. Hence $x=1$. This proves that $\{ \pm 1\} \cap H=1$. Moreover, the cardinalities of these two subgroups, multiplied together, give $2^{r-1}=\left|\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times}\right|$, so that by the second isomorphism theorem for groups we can conclude that $\{ \pm 1\} H=\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times}$and by what we observed above, that

$$
\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times} \cong\{ \pm 1\} \times H=\{ \pm 1\} \times\left\{1,5,5^{2} \ldots, 5^{2^{r-2}-1}\right\}
$$

4. Let n be a positive integer and $p \nmid n$ a prime number. Prove that the irreducible factors of $\Phi_{n} \in \mathbb{F}_{p}[X]$ are all distinct and their degree is equal to the order of $p+n \mathbb{Z}$ in $(\mathbb{Z} / n \mathbb{Z})^{\times}$. [Hint: You may want to prove the following claim: if α is a root of Φ_{n}, then α is a primitive root of 1.]

Solution: See Notes 26 from the website.
5. Let n be a positive integer. Prove that there are infinitely many primes p such that $p \equiv 1 \bmod n$. [Hint: If one such prime p exists for every n, then one can find a bigger one p^{\prime} satisfying $\left.p^{\prime} \equiv 1 \bmod (n \cdot p)\right]$
Solution: See Notes 26 from the website.

[^0]: ${ }^{1}$ By the Chinese Remainder Theorem, $\mathbb{Z} / a b \mathbb{Z} \cong \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ as rings, so that they have isomorphic groups of units. Notice that an element $(x, y) \in \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ is invertible if and only if both x and y are invertible, so that we obtain an isomorphism $(\mathbb{Z} / a b \mathbb{Z})^{\times} \cong(\mathbb{Z} / a \mathbb{Z})^{\times} \times(\mathbb{Z} / b \mathbb{Z})^{\times}$. Then $\varphi(a b)=\left|(\mathbb{Z} / a b \mathbb{Z})^{\times}\right|=\left|(\mathbb{Z} / a \mathbb{Z})^{\times}\right| \cdot\left|(\mathbb{Z} / b \mathbb{Z})^{\times}\right|=\varphi(a) \varphi(b)$.

