Algebra II

Solution 26

CYCLOTOMIC EXTENSIONS.

In the following, $\varphi : \mathbb{Z}_{\geq 1} \longrightarrow \mathbb{Z}_{\geq 0}$ is the Euler function $\varphi(n) = \operatorname{card} ((\mathbb{Z}/n\mathbb{Z})^{\times})$. For each integer $n \geq 1$, we consider the *n*-th cyclotomic polynomial

$$\Phi_n := \prod_{a \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (T - e^{\frac{2\pi i}{n}a}) \in \mathbb{Z}[T].$$

- 1. Prove the following properties of the cyclotomic polynomials $\varphi_n \in \mathbb{Z}[T]$
 - (a) $\Phi_n(T) = T^{\varphi(n)} \Phi_n\left(\frac{1}{T}\right)$ for every integer $n \ge 2$.
 - (b) $\Phi_p(T) = T^{p-1} + \dots + 1$ for every prime number p.
 - (c) $\Phi_{p^r}(T) = \Phi_p(T^{p^{r-1}})$ for every prime number p and integer $r \ge 1$.
 - (d) $\Phi_{2n}(T) = \Phi_n(-T)$ for every **odd** integer $n \ge 1$.

Solution:

(a) Clearly,
$$\varphi(n) = \deg(\Phi_n)$$
. Write $\Phi_n(T) = \sum_{j=0}^{\varphi(n)} a_j T^j$. Then

$$T^{\varphi(n)}\Phi_n\left(\frac{1}{T}\right) = T^{\varphi(n)}\sum_{j=0}^{\varphi(n)}a_jT^{-j} = \sum_{j=0}^{\varphi(n)}a_jT^{\varphi(n)-j} \in \mathbb{Z}[T]$$

is a degree $\varphi(n)$ polynomial as well. Notice that, for each $a \in \mu_n$ we have $a^{-1} \in \mu_n$, so that

$$a^{\varphi(n)}\Phi_n\left(\frac{1}{a}\right) = 1 \cdot 0 = 0$$

Hence $T^{\varphi(n)}\Phi_n\left(\frac{1}{T}\right)$ has roots $R(T^{\varphi(n)}\Phi_n\left(\frac{1}{T}\right)) = \mu_n = R(\Phi_n)$ and since they have the same degree and Φ_n has distinct roots they must coincide.

- (b) See Assignment 11, Exercise 4.
- (c) Since μ_n is the disjoint union of the set of primitive *d*-th roots of 1 for each divisor d|n, we obtain the equality

$$T^n - 1 = \prod_{d|n} \Phi_d(T).$$

FS18

This reads, for $n = p^r$, as

$$T^{p^r} - 1 = \prod_{m=0}^r \Phi_{p^m}.$$

Hence, by induction on r,

$$\Phi_{p^r}(T) = \frac{T^{p^r} - 1}{\prod_{m=0}^{r-1} \Phi_{p^m}} = \frac{T^{p^r} - 1}{T^{p^{r-1}} - 1} = \frac{(T^{p^{r-1}})^p - 1}{T^{p^{r-1}} - 1} = \Phi_p(T^{p^{r-1}}).$$

(d) Since 2 and n are coprime by assumption, we know that $\varphi(2n) = \varphi(2)\varphi(n) = \varphi(n)$, so that the two given polynomials have the same degree. If ζ is a primitive 2n-th root of 1, then $\operatorname{ord}_{\mathbb{C}^{\times}}(\zeta^n) = 2$, so that $\zeta^n = -1$. In particular, since n is odd, we get $(-\zeta)^n = -\zeta^n = 1$, so that $-\zeta$ is a n-th root of 1. It must be a primitive n-th root of 1, because if $(-\zeta)^m = 1$ for m < n, then $zeta^{2m} = (-\zeta)^{2m} = 1$ which contradicts the fact that ζ is a primitive 2n-th root of 1. Hence $R(\Phi_n) = \{-\zeta, \zeta \in R(\Phi_{2n})\}$, so that

$$\Phi_n(T) = \prod_{\zeta \in R(\Phi_n)} (T - \zeta) = \prod_{\zeta \in R(\Phi_{2n})} (T + \zeta) = (-1)^{\varphi(2n)} \prod_{\zeta \in R(\Phi_{2n})} (-T - \zeta)$$
$$= (-1)^{\varphi(2n)} \Phi_{2n}(-T).$$

In order to conclude, we need to prove that $\varphi(2n)$ is even for n odd. As already noticed, $\varphi(2n) = \varphi(n)$ in this case. Decomposing n into a product of prime powers and using the fact that $\varphi(ab) = \varphi(a)\varphi(b)$ when a and b are coprime¹, we see that it is enough to check that $\varphi(p^r)$ is event for each odd prime p and $r \ge 1$, which is clear from the formula $\varphi(p^r) = p^r - p^{r-1}$.

2. Let p be an odd prime number and $r \ge 2$ an integer. We want to prove that there is an isomorphism of abelian groups

$$(\mathbb{Z}/p^{r}\mathbb{Z})^{\times} = \mathbb{Z}/p^{r-1}\mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z}.$$

- (a) Explain why the statement is equivalent to proving that $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is cyclic.
- (b) Prove that there exists $g \in \mathbb{Z}$ which generates $(\mathbb{Z}/p\mathbb{Z})^{\times}$ and such that $g^{p-1} \not\equiv 1 \mod p^2$ [*Hint:* Let g be a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Look at $(g+p)^{p-1}$ modulo p^2 and eventually replace g with g+p]
- (c) Prove inductively that there are integers $k_1, k_2, \ldots, k_{r-1} \in \mathbb{Z}$ for which

$$g^{p^{j-1}(p-1)} = 1 + k_j p^j, \ p \nmid k_j$$

¹By the Chinese Remainder Theorem, $\mathbb{Z}/a\mathbb{Z} \cong \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ as rings, so that they have isomorphic groups of units. Notice that an element $(x, y) \in \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ is invertible if and only if both x and y are invertible, so that we obtain an isomorphism $(\mathbb{Z}/ab\mathbb{Z})^{\times} \cong (\mathbb{Z}/a\mathbb{Z})^{\times} \times (\mathbb{Z}/b\mathbb{Z})^{\times}$. Then $\varphi(ab) = |(\mathbb{Z}/ab\mathbb{Z})^{\times}| = |(\mathbb{Z}/a\mathbb{Z})^{\times}| \cdot |(\mathbb{Z}/b\mathbb{Z})^{\times}| = \varphi(a)\varphi(b).$

- (d) Deduce that $g^{p^{r-2}(p-1)} \not\equiv 1 \mod p^r$. Moreover, prove that $\operatorname{ord}_{(\mathbb{Z}/p^r\mathbb{Z})^{\times}}(g)$ divides $p^{r-1}(p-1)$.
- (e) Suppose that $g^{p^{\varepsilon}d} \equiv 1 \mod p^r$ for some integer $\varepsilon \ge 1$ and a proper divisor d of p-1. Deduce that $g^d \equiv 1 \mod p$ and derive a contradiction.
- (f) Conclude that g is a generator of $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$.

Solution:

- (a) Since p-1 and p^r are coprime, the group $\mathbb{Z}/p^{r-1}\mathbb{Z}\times\mathbb{Z}/(p-1)\mathbb{Z}$ is isomorphic to $\mathbb{Z}/p^{r-1}(p-1)\mathbb{Z}$, a cyclic group. Since this group has cardinality $p^{r-1}(p-1) = p^r p^{r-1} = \varphi(p^r) = |(\mathbb{Z}/p^r\mathbb{Z})^{\times}|$, proving that $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is cyclic is enough to prove the given statement.
- (b) As seen in Algebra I, the group $\mathbb{F}_p^{\times} = (\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic. Let $g \in \mathbb{Z}$ be a representative of a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. If $g^{p-1} \not\equiv 1 \mod p^2$, then we are done. Else, assume that $g^{p-1} \equiv 1 \mod p^2$. Expanding the binomial power $(g+p)^{p-1}$ as suggested in the hint, we see that

$$(g+p)^{p-1} = g^{p-1} + (p-1)g^{p-2}p + p^2m$$
, for some $m \in \mathbb{Z}$.

Hence $(g+p)^{p-1} \equiv g^{p-1} - g^{p-2}p \pmod{p^2}$. Since $g^{p-1} \equiv 1 \mod p^2$ by assumption, we see that

$$(g+p)^{p-1} \equiv 1 - g^{p-2}p,$$

where $p \nmid g$ so that $p \nmid g^{p-2}$, so that $p^2 \nmid g^{p-2}p$ and $(g+p)^{p-1} \not\equiv 1 \mod p^2$. Then g+p satisfies the desired property (it is a generator as well, because it represents the same class as g in $\mathbb{Z}/p\mathbb{Z}$.

(c) For j = 1, we know by the previous step that

$$g^{1\cdot(p-1)} = 1 + k_1 p, \ p \nmid k_1,$$

because $g^{p-1} \equiv 1 \mod p$ and $g^{p-1} \nmid 1 \mod p^2$. Now suppose that for $j \geq 2$ there exists k_{j-1} such that $g^{p^{j-2}(p-1)} = 1 + k_{j-1}p^{j-1}$ and $p \nmid k_{j-1}$. Then

$$g^{p^{j-1}(p-1)} = (g^{p^{j-2}(p-1)})^p = (1+k_{j-1}p^{j-1})^p \stackrel{(*)}{=} 1 + p \cdot k_{j-1}p^{j-1} + p^{2j-1}m_j$$
$$= 1 + (k_{j-1} + p^{j-1}m_j)p^j$$

for some integer m_j . In the equality (*) we used the fact that p divides the binomial coefficients $\binom{p}{k}$ for 0 < k < p. Then $k_j := k_{j-1} + p^{j-1}m_j$ is not divisible by p because k_{j-1} is not while $p|p^{j-1}m_j$ as $j \ge 2$. This proves the induction step and concludes the proof.

(d) For j = r - 1, we obtain

$$g^{p^{r-2}(p-1)} = 1 + k_{r-1}p^{r-1}$$

where $p \nmid k_{r-1}$. This implies that $g^{p^{r-2}(p-1)} \not\equiv 1 \mod p^r$. This means that the order of g in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ does not divide $p^{r-2}(p-1)$. On the other hand, this order divides the cardinality of the group, which is $p^{r-1}(p-1)$.

- (e) Under the given assumption, reducing modulo p and applying Fermat's little theorem which asserts that $g^p \equiv g \pmod{p}$, we obtain $g^d \equiv 1 \mod p$, which is a contradiction with the fact that g is a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
- (f) By the previous point, the order of g in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$, which is a divisor of $p^{r-1}(p-1)$ by part (d), is of the form $p^{\varepsilon} \cdot (p-1)$. But this order does not divide $p^{r-2}(p-1)$ by part (d), so the only remaining possibility is that $\operatorname{ord}_{(\mathbb{Z}/p^r\mathbb{Z})^{\times}}(g) = p^{r-1}(p-1) = |(\mathbb{Z}/p^r\mathbb{Z})^{\times}|$. Hence g is a generator of $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$.
- 3. Prove that for every integer $r \ge 2$ there is an isomorphism of abelian groups

$$(\mathbb{Z}/2^{r}\mathbb{Z})^{\times} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{r-2}\mathbb{Z}.$$

More specifically, show for $r \ge 3$ that

$$(\mathbb{Z}/2^{r}\mathbb{Z})^{\times} \cong \{\pm 1\} \times \{1, 5, 5^{2} \dots, 5^{2^{r-2}-1}\}$$

Solution: First, we prove that $5 \in (\mathbb{Z}/2^r\mathbb{Z})^{\times}$ has order 2^{r-2} in a way similar to parts (c) and (d) of Exercise 2. Since

$$|(\mathbb{Z}/2^{r}\mathbb{Z})^{\times}| = \varphi(2^{r}) = 2^{r} - 2^{r-1} = 2^{r-1}(2-1) = 2^{r-1},$$

the order of 5 must be a power of 2. We test the elements $5^{2^{\ell}}$ as follows:

$$5 = 1 + 2^{2}$$

$$5^{2} = (1 + 2^{2})^{2} = 1 + 2^{3} + 2^{4} = 1 + k_{1}2^{3} \text{ with } 2 \nmid k_{1} \in \mathbb{Z},$$

$$5^{2^{2}} = (1 + k_{1}2^{3})^{2} = 1 + k_{1}2^{4} + k_{1}^{2}2^{6} = 1 + k_{2}2^{4} \text{ with } 2 \nmid k_{2} \in \mathbb{Z}.$$

Iterating this, one can prove that there exist k_1, k_2, k_3, \ldots odd numbers such that

$$5^{2^j} = 1 + k_j 2^{2+j}.$$

In particular, for j = r - 3 and j = r - 2 we obtain

$$5^{2^{r-3}} = 1 + k_{r-3} 2^{r-1} \not\equiv 1 \pmod{2^r}$$

$$5^{2^{r-2}} = 1 + k_{r-2} 2^r \equiv 1 \pmod{2^r},$$

letting us conclude that 5 has order 2^{r-2} in $(\mathbb{Z}/2^r\mathbb{Z})^{\times}$, so that $H = \{1, 5, 5^2 \dots, 5^{2^{r-2}-1}\}$ is a subgroup of $(\mathbb{Z}/2^r\mathbb{Z})^{\times}$, of index $2^{r-1}/2^{r-2} = 2$.

In order to prove that $(\mathbb{Z}/2^r\mathbb{Z})^{\times} \cong \{\pm 1\} \times H$, it is enough to check that $\mathbb{Z}/2^r\mathbb{Z}$ is a semidirect product of $\{\pm 1\}$ and H (see Assignment 21, Exercise 1), because the action of one subgroup on the other by conjugation is trivial as we are in an abelian group. In particular, both $\{\pm 1\}$ and H are normal subgroups. Let $x \in \{\pm 1\} \cap H$. Then $x = \pm 1$. If x = -1, then $-1 \equiv 5^a \pmod{2^r}$ which, reducing modulo 4, gives $-1 \equiv 1 \pmod{4}$, contradiction. Hence x = 1. This proves that $\{\pm 1\} \cap H = 1$. Moreover, the cardinalities of these two subgroups, multiplied together, give $2^{r-1} = |(\mathbb{Z}/2^r\mathbb{Z})^{\times}|$, so that by the second isomorphism theorem for groups we can conclude that $\{\pm 1\}H = (\mathbb{Z}/2^r\mathbb{Z})^{\times}$ and by what we observed above, that

$$(\mathbb{Z}/2^{r}\mathbb{Z})^{\times} \cong \{\pm 1\} \times H = \{\pm 1\} \times \{1, 5, 5^{2} \dots, 5^{2^{r-2}-1}\}.$$

4. Let n be a positive integer and $p \nmid n$ a prime number. Prove that the irreducible factors of $\Phi_n \in \mathbb{F}_p[X]$ are all distinct and their degree is equal to the order of $p + n\mathbb{Z}$ in $(\mathbb{Z}/n\mathbb{Z})^{\times}$. [*Hint:* You may want to prove the following claim: if α is a root of Φ_n , then α is a primitive root of 1.]

Solution: See Notes 26 from the website.

5. Let n be a positive integer. Prove that there are infinitely many primes p such that $p \equiv 1 \mod n$. [*Hint:* If one such prime p exists for every n, then one can find a bigger one p' satisfying $p' \equiv 1 \mod (n \cdot p)$]

Solution: See Notes 26 from the website.