Midterm

| 1. Let G be a group and H a subgroup of G. | true | false |
| :--- | :--- | :--- | :--- |
| a) The index of H in G is a prime number. | | |
| b) If H is abelian, then H is normal in G. | | |
| c) If G is abelian, then H is normal in G. | | |
| d) If H is abelian and the index of H in G is two, then G is abelian. | | |
| e) If G is simple, then either $H=G$ or $H=\{1\}$. | | |

2.	Let G be a group acting on a set X and H a subgroup of G.	true	false
a) If the action of G is faithful, so is the action of H on X.			
b) If the action of G has no fixed point, so does the action of H on X.			
c) If the action of G is transitive, so is the action of H on X.			
d)	For each $x \in X, \operatorname{Stab}_{H}(x)=\operatorname{Stab}_{G}(x) \cap H$.		
e)	Each H-orbit of X is contained in a G-orbit of X.		

3.	frulse		
a)	A_{7} is simple.	true	fation has a unique decomposition into a product of
b)Every permutation transpositions.			
c)	One can write down (12345) as a product of exactly 5 transpositions.		
d)	The action of S_{n} on $\{1, \ldots, n\}$ is transitive and faithful.		
e)	The permutations $(123)(45)$ and $(15)(234)$ are conjugated in S_{8}.		

| 4. Let A be a commutative ring and I an ideal of A. | true | false |
| :--- | :--- | :--- | :--- |
| a) If $f, g \in A[X]$ have both degree 3, then $f \cdot g$ has degree 6. | | |
| b) If I is a maximal ideal, then A / I is an integral domain. | | |
| c) If A is a UFD, then $A[X]$ is a PID. | | |
| d) If A is a PID, then A / I is a PID. | | |
| e) The set of polynomials in $A[X]$ whose coefficients lie in I is an ideal in | | |

5. Let A and B be commutative rings and $f: A \longrightarrow B$ a ring homomorphism. Let I be an ideal in A and denote by $p: A \longrightarrow A / I$ the usual projection.

true	false

6.	Let $R=\mathbb{Z} / 15 \mathbb{Z}$.	true	false
a)	R contains precisely 2 prime ideals.		
b)	$R[X]$ is a PID.		
c)	The ideal generated by X in $R[X]$ is maximal.		
d)	$\operatorname{card}\left(R^{\times}\right)=8$		
e)	There exists precisely one ring homomorphism $R \longrightarrow \mathbb{Z}$.		

7.	frue	false	
a)	A free \mathbb{Z}-module has no torsion.		
b)	A free \mathbb{Z}-module is finitely generated.		
c)	There are, up to isomorphism, 3 different abelian groups of 18 elements.		
d)	There are, up to isomorphism, 4 different abelian group of 100 elements.		
e)	The \mathbb{Z}-module \mathbb{Q} is free.		

8. Let L / K be a field extension.	true	false	
a) If L / K is of finite degree, then it is algebraic.			
b) If $f \in K[T]$ has no roots in L, then it is irreducible in $K[T]$.			
c) If $\alpha \in L$ is algebraic, then $\operatorname{deg}(\operatorname{irr}(\alpha ; K))=[K(\alpha): K]$.			
d)	If $\alpha, \beta \in L$ are transcendental over K, then $\alpha+\beta$ is transcendental over K.		
e) If $\alpha \in L \backslash K$ and $\alpha^{2} \in K$, then $\operatorname{irr}(\alpha ; K)=X^{2}-\alpha^{2}$.			

9.	true	false	
a)	There exists a finite field with 250 elements.		
b)	Any finite field with 81 elements has characteristic 3.		
c)	The polynomial $X^{120}-1 \in \mathbb{F}_{11}[X]$ has 10 roots in \mathbb{F}_{11}.		
d)If E is a finite field and F / E is an algebraic field extension, then F is a finite field.			
e)If E is a finite field with m elements and F / E is a finite field extension of E, then card (F) is a multiple of m.			

10. Consider the polynomial $f=X^{5}-1 \in \mathbb{Q}[X]$ and let K / \mathbb{Q} be the splitting			
field of f in \mathbb{C}.	true	false	
a)	K / \mathbb{Q} has degree divisible by 6.		
b) f is the minimal polynomial of $e^{\frac{2 \pi i}{5}}$ over \mathbb{Q}.			
c) $\cos \left(\frac{2 \pi}{5}\right) \in K$			
d)	Any field homomorphism $K \longrightarrow \mathbb{C}$ has image equal to K.		
e) $\mathbb{Q}\left(e^{\frac{2 \pi i}{5}}\right)=K$.			

