Midterm

1.	Let G be a group and H a subgroup of G .	true	false
a)	The index of H in G is a prime number.		
b)	If H is abelian, then H is normal in G .		
c)	If G is abelian, then H is normal in G .		
d)	If H is abelian and the index of H in G is two, then G is abelian.		
e)	If G is simple, then either $H = G$ or $H = \{1\}$.		
2.	Let G be a group acting on a set X and H a subgroup of G .	true	false

Ζ.	Let G be a group acting on a set X and H a subgroup of G.	true	false
a)	If the action of G is faithful, so is the action of H on X .		
b)	If the action of G has no fixed point, so does the action of H on X .		
c)	If the action of G is transitive, so is the action of H on X .		
d)	For each $x \in X$, $\operatorname{Stab}_H(x) = \operatorname{Stab}_G(x) \cap H$.		
e)	Each H -orbit of X is contained in a G -orbit of X .		

3.		true	false
a)	A_7 is simple.		
b)	Every permutation has a unique decomposition into a product of transpositions.		
c)	One can write down (12345) as a product of exactly 5 transpositions.		
d)	The action of S_n on $\{1, \ldots, n\}$ is transitive and faithful.		
e)	The permutations $(123)(45)$ and $(15)(234)$ are conjugated in S_8 .		

4.	Let A be a commutative ring and I an ideal of A .	true	false
a)	If $f, g \in A[X]$ have both degree 3, then $f \cdot g$ has degree 6.		
b)	If I is a maximal ideal, then A/I is an integral domain.		
c)	If A is a UFD, then $A[X]$ is a PID.		
d)	If A is a PID, then A/I is a PID.		
e)	The set of polynomials in $A[X]$ whose coefficients lie in I is an ideal in $A[X]$.		

5.	Let A and B be commutative rings and $f: A \longrightarrow B$ a ring homomorphism. Let I be an ideal in A and denote by $p: A \longrightarrow A/I$ the usual projection.	true	false
a)	If ker $(f) \subset I$, then there exists a ring homomorphism $g: A/I \longrightarrow B$ such that $f = g \circ p$.		
b)	If B is a field, then $A/\ker(f)$ is an integral domain.		
c)	If f is injective, then A is isomorphic to a subring of B .		
d)	For every $b \in B$, there exists a unique ring homomorphism $h : A[X] \longrightarrow B$ sending $X \longmapsto b$.		
e)	If $J \subset B$ is a prime ideal, then $f^{-1}(J)$ is a prime ideal in A .		

6.	Let $R = \mathbb{Z}/15\mathbb{Z}$.	true	false
a)	R contains precisely 2 prime ideals.		
b)	R[X] is a PID.		
c)	The ideal generated by X in $R[X]$ is maximal.		
d)	$\operatorname{card}(R^{\times}) = 8$		
e)	There exists precisely one ring homomorphism $R \longrightarrow \mathbb{Z}$.		

7.		true	false
a)	A free \mathbb{Z} -module has no torsion.		
b)	A free \mathbb{Z} -module is finitely generated.		
c)	There are, up to isomorphism, 3 different abelian groups of 18 elements.		
d)	There are, up to isomorphism, 4 different abelian group of 100 elements.		
e)	The \mathbb{Z} -module \mathbb{Q} is free.		

8.	Let L/K be a field extension.	true	false
a)	If L/K is of finite degree, then it is algebraic.		
b)	If $f \in K[T]$ has no roots in L, then it is irreducible in $K[T]$.		
c)	If $\alpha \in L$ is algebraic, then $\deg(\operatorname{irr}(\alpha; K)) = [K(\alpha) : K].$		
d)	If $\alpha, \beta \in L$ are transcendental over K, then $\alpha + \beta$ is transcendental over K.		
e)	If $\alpha \in L \setminus K$ and $\alpha^2 \in K$, then $irr(\alpha; K) = X^2 - \alpha^2$.		

9.		true	false
a)	There exists a finite field with 250 elements.		
b)	Any finite field with 81 elements has characteristic 3.		
c)	The polynomial $X^{120} - 1 \in \mathbb{F}_{11}[X]$ has 10 roots in \mathbb{F}_{11} .		
d)	If E is a finite field and F/E is an algebraic field extension, then F is a finite field.		
e)	If E is a finite field with m elements and F/E is a finite field extension of E, then $card(F)$ is a multiple of m.		
10.	Consider the polynomial $f = X^5 - 1 \in \mathbb{Q}[X]$ and let K/\mathbb{Q} be the splitting field of f in \mathbb{C} .	true	false
a)	K/\mathbb{Q} has degree divisible by 6.		
b)	f is the minimal polynomial of $e^{\frac{2\pi i}{5}}$ over \mathbb{Q} .		

Any field homomorphism $K \longrightarrow \mathbb{C}$ has image equal to K.

 $\cos(\tfrac{2\pi}{5}) \in K$

 $\mathbb{Q}(e^{\frac{2\pi i}{5}}) = K.$

c)

d)

e)

3