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Solution of the Midterm

1. Let GG be a group and H a subgroup of G.

a)

The index of H in G is

a prime number.

False. For example, 47 is a subgroup of Z of index 4.

If H is abelian, then H

False. For example, consider G = S5 and its abelian subgroup
H = {id, (12)}. Then (13)(12)(13)~! = (32) &€ H, so that H is not

then G is abelian.

b
) is normal in G. normal in G.
If ' is abelian. then & | True. For each h € H and g € G, abelianity of G implies that
c) is normal in G. ghg™' =hgg™ =h € H.
If H is abelian and the
d) index of H in G is two False. For example, consider G = S3 and H = As.

)

If G is simple, then
either H = GG or
H={1}.

False. If G is simple, then it can still contain non-trivial proper
subgroups, as long as they are not normal. For example, take As,

which is simple as proven in class, but contains the subgroup

((12)(34)) = {id, (12)(34)}.

2. Let G be a group acting on a set X and H a subgroup of G.

a)

If the action of GG is
faithful, so is the
action of H on X.

True. Faithfulness of the action means that the corresponding map
G — Aut(X) is injective. Composing this map with the inclusion
H — GG we obtain that the action of H on X, corresponding to the
resulting injective map H — Aut(X), is faithful as well.

If the action of G has
no fixed point, so does
the action of H on X.

False. Let G = Sy act on X = {1,2} in the usual way and H = {id}.
While G has no fixed point, H fixes the whole X # &.

If the action of GG is
transitive, so is the
action of H on X.

False. The same example given in b) is a counterexample.

For each z € X,
Stabg(z) =
Stabg(z) N H.

True. It follows immediately by definition.

Each H-orbit of X is
contained in a G-orbit

of X.

True. If y € X is in the H-orbit of z, then y = h - x for some
h € H C G, so that y is in the G-orbit of x. This implies that the
H-orbit of x is contained in the G-orbit of x.




3.

a)

Az is simple.

True. We saw in class that A, is simple for each n € N5;.

b)

Every permutation has
a unique decomposition
into a product of

transpositions.

False. For example, S3 3id = (12)(12) = (13)(13).

One can write down
(12345) as a product
of exactly b

transpositions.

False. (12345) has signature 1 (it is equal to (15)(14)(13)(12)),

while a product of 5 transposition has signature —1.

The action of S,, on
{1,...,n} is transitive
and faithful.

True. By definition, a permutation acts trivially on each

j €{1,...,n} if and only if it is the identity (faithfulness). Moreover,
for each 7,7 € {1,...,n}, the permutation (i j) sends i to j
(transitivity).

The permutations
(123)(45) and
(15)(234) are
conjugated in Ss.

True. The two permutations have the same cyclic type, which
characterize a conjugacy class as seen in the lecture (the conjugacy
class of the given permutations corresponds to the partition
8=1+1+1+2+3).

4. Let A be a commutative ring and I an ideal of A.

a)

If f,g € A[X] have
both degree 3, then
f - g has degree 6.

False. For example, consider A = Z/4Z and the polynomials
f=9g=2X3+1 of degree 3. Then fg=4X%+4X3+1=1 has
degree 0.

If I is a maximal ideal,

True. By definition, if I is maximal, then A/I is a field, which

b) then A/I'is an integral implies that it is an integral domain.

domain.

If Ais a UFD, then False. For example, consider A = Z. It is a UFD, but Z[X] is not a
c) A[X] is a PID. PID (see Assignment 4, Exercise 4(c)).

If Aisa PID, then A/I
is a PID.

False. For example, consider A = Z and [ = 4Z. Since Z /47 is not

an integral domain, it is not a PID.

The set of polynomials
in A[X] whose
coefficients lie in [ is
an ideal in A[X].

True. Let J be the given subset A[X] consisting of polynomials
whose coefficients lie in I. Clearly, 0 € J. Moreover, for each
f=>,a:Xg=>,bX"€ J (meaning, a;,b; € I for each i) and
h=>3,¢X" € R[X], we see that f — g =)".(a; — b;)X" € J because
a; — b; € I for each 7 and that fh = D(ZZZO apb;_) X because
arb;_, € I for each 7 and k and I is closed under the sum. This means
that the axioms of ideal are all satisfied.
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5. Let A and B be commutative rings and f : A — B a ring homomorphism. Let [ be

an ideal in A and denote by p: A — A/I the usual projection.

If ker(f) C I, then
there exists a ring

homomorphism

g: A/l — B such
that f = gop.

False. This would hold (by the First Isomorphism Theorem) if one
replaced “ker(f) C I” with “ker(f) D I”. As a counterexample of the
given statement, consider A = B =Z, f =idy and [ = 27Z. There
exists no ring homomorphism ¢ : Z/27Z — Z (because 0 — 0 and
1+—— 1imply that Z/2Z50=2=14+1+—1+1=2#0€Zisa
contradiction).

If B is a field, then
A/ ker(f) is an integral

domain.

True. Since B is a field, its subring im(f) is an integral domain.
Then we can conclude by observing that there exists an isomorphism
g:A/ker(f) = im(f) C B by the First Isomorphism Theorem.

If f is injective, then A
is isomorphic to a
subring of B.

True. If A is injective, then ker(f) = 0 and the projection p is an
isomorphism, so that A = A/ker(f)im(f) C B.

For every b € B, there
exists a unique ring
homomorphism

h: A[X] — B sending
X —b.

False. In order to obtain a unique A, by the characterization of
morphisms from a polynomial ring given in class, one needs to specify
the map on the coefficients as well (e.g., ask that h(X) = b and

hla = f). As a counterexample of the given statement, consider

A =B =C, b=0. Then there exists a unique ring homomorphism
h: C[X] — C sending X —— 0 and such that h|c = idc (it is the
evaluation at 0) and a unique ring homomorphism b’ : C[X| — C

sending X +—— 0 and such that A'|c is the complex conjugation.
Clearly h # I, because h(i) =i # —i = h/(3).

If J C B is a prime
ideal, then f~1(J) is a
prime ideal in A.

True. Let ¢ : B — B/J be the natural projection. As J is a prime
ideal, B/J is an integral domain. Then ker(qo f) = f~'(J) and by the
First Isomorphism Theorem there is an injection

A/(f~1(J)) — B/J. Hence A/(f~'(J)) is an integral domain as well
and (f~1(J)) is a prime ideal in A.




6. Let R = Z/15Z.

a)

R contains precisely 2
prime ideals.

True. The ideals of R are the preimages under the projection

p: Z — Z/15Z of the ideals of Z containing 15Z. Hence the ideals of
R are R = 7Z/15Z, 3Z/15Z, 5Z/15Z, 157Z,/15Z = 0 among which
3Z/15Z and 5Z/15Z are seen to be prime (because the corresponding
quotients of R are fields of 3 and 5 elements respectively), while R is

not prime by definition and 0 does contains 3 - 5, but neither 3 nor 5.

R[X] is a PID.

False. R[X] is not an integral domain (since 3 -5 = 0), so it cannot be
a PID.

The ideal generated by
X in R[X] is maximal.

False. The given ideal (X) is the kernel of the evaluation map
R[X] — R at 0, which is clearly surjective. By the First
Isomorphism Theorem, R[X]/(X) = R, which is not a field. Hence
(X) is not maximal.

card(R*) = 8

True. The units of R are given by the classes a 4+ 15Z such that
ged(a, 15) = 1. Hence R* = {1,2,4,7,8,11, 13,14} contains eight

elements.

There exists precisely
one ring
homomorphism

R — 7.

False. A ring homomorphism R — Z would have to send 0 — 0,
1 +—— 1 and hence 0 = 151 +— 15 # 0. This implies that there is no
ring homomorphism R — Z.




a)

A free Z-module has

no torsion.

True. A free Z-module is isomorphic to Z) where I is a set. But Z)
has no torsion: if 0 # = = (;)se; € ZW), then z;, # 0 for some 4y € I,
and if for n € Z \ {0} we write n -z = (y;);er, we see that

Yi, = nx;, # 0, so that n -z # 0.

A free Z-module is

finitely generated.

False. The free module Z® is not finitely generated.

There are, up to
isomorphism, 3
different abelian groups
of 18 elements.

False. By the classification of finitely generated modules over a PID,
abelian groups (i.e., Z-modules) of 18 elements are all isomorphic to
Z/27 @ H, where H is an abelian group of 9 elements. There are then
two possibilities: either H = Z/3Z x Z/3Z or H = 7,/9Z, which give a

total of 2 non-isomorphic abelian groups of 18 elements.

There are, up to
isomorphism, 4
different abelian group
of 100 elements.

True. Similarly as in c¢), abelian groups (i.e., Z-modules) of 100
elements are all isomorphic to Hy & Hs, where Hy is an abelian group
of 22 elements and Hj is an abelian group of 5% elements. There are
then two possibilities for Hy (Hy = Z/27 X Z/2Z or Hy = 7./AZ) and
two for Hs (Hs = Z/5Z x Z/5Z or Hs = 7,/25Z), which give a total of
2 - 2 = 4 non-isomorphic abelian groups of 100 elements.

)

The Z-module Q is

free.

False. See Assignment 13, Exercise 5 for an argument.

8. Let L/K be a field extensi

on.

a)

If L/K is of finite
degree, then it is
algebraic.

True. This was seen in class: a field extension L/K is of finite degree
if and only if it is algebraic and finitely generated.

If f € K[T] has no

False. For example, let L = K = Q and f = (X? —2)(X?-3) € Q.

b) roots in L, then it is The polynomial f is clearly not irreducible, although it has no roots in
irreducible in K[T]. Q.
If a € L is algebraic,
¢) then deg(irr(o; K)) = True. This equality was seen in class.
[K(a): KJ.
If o, B € L are False. Let K =Q, L =C, a =7 and =2 — 7. As seen in class, 7 is
transcendental over . | transcendental over Q. Then Q(7) = Q(1 — ) is an extension of Q of
d) then a + 3 is infinite degree, so that (3 is transcendental over Q as well, whereas

transcendental over K.

a+ f=2¢eQ is not.

Ifae L\ K and
a? € K, then
irr(o; K) = X2 — o2

True. The polynomial X? — a? € K[X] has root « and is monic. Tt is
irreducible, because otherwise it would have a linear factor in K[X],
that is, it would have a root in K, which would imply that o € K
(because the roots of X? — a? in K are +«) which contradicts our

assumption. Hence X? — a? is the minimal polynomial of a over K.




There exists a finite
field with 250 elements.

False. The cardinality of a finite field is, as seen in class, a power of a
prime number, but 250 = 2 - 5 is not a power of a prime.

Any finite field with 81
elements has
characteristic 3.

True. As seen in class, a field of 81 = 3% elements is a field extension
of IF3. Since [F3 has characteristic 3, this must be the case for each of

its extensions.

The polynomial
X120 —1€ ]FH[X] has
10 roots in Fy;.

True. Each element z € Fy; satisfies 2'! = 2, which implies that
12 = (211 = g1 = 1 for each x € Fy;. For z # 0, we can divide by
x to obtain z'** — 1. Hence all the 10 invertible (i.e., non-zero)

elements of F;; are roots of X'2° — 1, while clearly 0 is not.

If F is a finite field and
F/FE is an algebraic
field extension, then F'
is a finite field.

False. The algebraic closure E of E is an algebraic extension by
definition, but it has infinite cardinality, because it contains subfields
with cardinality equal to an arbitrarily high power of the
characteristic of E.

If F is a finite field
with m elements and
F/FE is a finite field
extension of F, then
card(F') is a multiple of
m.

True. The cardinality of F is card(E)?™=() = mFEl hence it a

positive power of m. As such, it is a multiple of m.

10. Consider the polynomial

f=X°—1€Q[X]. Let K/Q be the splitting field of f in C.

a)

K/Q has degree
divisible by 6.

False. Since the roots of X® — 1 are all powers of e%, we know that

2w

K =Q(es"). Then 1 < [K : Q] = [Q(eF) : Q] = deg(irr(e5", Q))
< deg(X® — 1) =5, so that [K : Q] cannot be a multiple of 6.

f is the minimal

polynomial of e over

Q.

False. The polynomial f has the root 1 in QQ, so in particular is not
irreducible and it cannot be the minimal polynomial of e . In fact,
X5—1=(X—-1)(X*"+ X3+ X2+ X 4+ 1) and the minimal

polynomial of e over Qis X*+ X3+ X2+ X +1.

cos(¥) e K

271 271 . 27T _ 27t .
True. cos(%) = 1(es +e 5 ), and K contains e 5 and e~ 5 since
they are roots of X5 — 1.

True. Such a field homomorphism has image inside K, since

Any field Q(e%) = K by a) and e’s" must be mapped to a root of X% — 1. But
d) homomorphism a field homomorphism is always injective, so that the resulting
K — C has image Q-linear map K — K must then be an isomorphism because K is a
equal to K. finite dimensional Q-vector space, meaning that the image is K.
) Q%) =K. True. See part a).




