Prof. Emmanuel Kowalski

Solution of the Midterm

1. Let G be a group and H a subgroup of G.

The index of H in G is a) a prime number.	False. For example, $4 \mathbb{Z}$ is a subgroup of \mathbb{Z} of index 4.
If H is abelian, then H b) is normal in G.	False. For example, consider $G=S_{3}$ and its abelian subgroup $H=\{\mathrm{id},(12)\}$. Then $(13)(12)(13)^{-1}=(32) \notin H$, so that H is not normal in G.
If G is abelian, then H c) is normal in G.	True. For each $h \in H$ and $g \in G$, abelianity of G implies that $g h g^{-1}=h g g^{-1}=h \in H$.
If H is abelian and the d) index of H in G is two, then G is abelian.	False. For example, consider $G=S_{3}$ and $H=A_{3}$.
If G is simple, then e) either $H=G$ or $H=\{1\} .$	False. If G is simple, then it can still contain non-trivial proper subgroups, as long as they are not normal. For example, take A_{5}, which is simple as proven in class, but contains the subgroup $\langle(12)(34)\rangle=\{\mathrm{id},(12)(34)\}$.

2. Let G be a group acting on a set X and H a subgroup of G.

If the action of G is a) faithful, so is the action of H on X.	True. Faithfulness of the action means that the corresponding map $G \longrightarrow \operatorname{Aut}(X)$ is injective. Composing this map with the inclusion $H \longrightarrow G$ we obtain that the action of H on X, corresponding to the resulting injective map $H \longrightarrow \operatorname{Aut}(X)$, is faithful as well.
If the action of G has b) no fixed point, so does the action of H on X.	False. Let $G=S_{2}$ act on $X=\{1,2\}$ in the usual way and $H=\{\mathrm{id}\}$. While G has no fixed point, H fixes the whole $X \neq \varnothing$.
If the action of G is c) transitive, so is the action of H on X.	False. The same example given in b) is a counterexample.
For each $x \in X$, d) $\begin{aligned} & \operatorname{Stab}_{H}(x)= \\ & \operatorname{Stab}_{G}(x) \cap H . \end{aligned}$	True. It follows immediately by definition.
Each H-orbit of X is e) contained in a G-orbit of X.	True. If $y \in X$ is in the H-orbit of x, then $y=h \cdot x$ for some $h \in H \subset G$, so that y is in the G-orbit of x. This implies that the H-orbit of x is contained in the G-orbit of x.

3.

a) A_{7} is simple.	True. We saw in class that A_{n} is simple for each $n \in \mathbb{N}_{\geq 5}$.
Every permutation has b) a unique decomposition into a product of transpositions.	False. For example, $S_{3} \ni \mathrm{id}=(12)(12)=(13)(13)$.
One can write down (12345) as a product of exactly 5 transpositions.	False. (12345) has signature 1 (it is equal to (15)(14)(13)(12)), while a product of 5 transposition has signature -1 .
The action of S_{n} on d) $\{1, \ldots, n\}$ is transitive and faithful.	True. By definition, a permutation acts trivially on each $j \in\{1, \ldots, n\}$ if and only if it is the identity (faithfulness). Moreover, for each $i, j \in\{1, \ldots, n\}$, the permutation $(i j)$ sends i to j (transitivity).
The permutations e) (123)(45) and (15)(234) are conjugated in S_{8}.	True. The two permutations have the same cyclic type, which characterize a conjugacy class as seen in the lecture (the conjugacy class of the given permutations corresponds to the partition $8=1+1+1+2+3)$.

4. Let A be a commutative ring and I an ideal of A.

If $f, g \in A[X]$ have a) both degree 3 , then $f \cdot g$ has degree 6 .	False. For example, consider $A=\mathbb{Z} / 4 \mathbb{Z}$ and the polynomials $f=g=2 X^{3}+1$ of degree 3. Then $f g=4 X^{6}+4 X^{3}+1=1$ has degree 0 .
If I is a maximal ideal, b) then A / I is an integral domain.	True. By definition, if I is maximal, then A / I is a field, which implies that it is an integral domain.
c) If A is a UFD, then $A[X]$ is a PID.	False. For example, consider $A=\mathbb{Z}$. It is a UFD, but $\mathbb{Z}[X]$ is not a PID (see Assignment 4, Exercise 4(c)).
d) If A is a PID, then A / I is a PID.	False. For example, consider $A=\mathbb{Z}$ and $I=4 \mathbb{Z}$. Since $\mathbb{Z} / 4 \mathbb{Z}$ is not an integral domain, it is not a PID.
The set of polynomials e) in $A[X]$ whose coefficients lie in I is an ideal in $A[X]$.	True. Let J be the given subset $A[X]$ consisting of polynomials whose coefficients lie in I. Clearly, $0 \in J$. Moreover, for each $f=\sum_{i} a_{i} X^{i}, g=\sum_{i} b_{i} X^{i} \in J$ (meaning, $a_{i}, b_{i} \in I$ for each i) and $h=\sum_{i} c_{i} X^{i} \in R[X]$, we see that $f-g=\sum_{i}\left(a_{i}-b_{i}\right) X^{i} \in J$ because $a_{i}-b_{i} \in I$ for each i and that $f h=\sum_{i}\left(\sum_{k=0}^{i} a_{k} b_{i-k}\right) X^{i}$ because $a_{k} b_{i-k} \in I$ for each i and k and I is closed under the sum. This means that the axioms of ideal are all satisfied.

5. Let A and B be commutative rings and $f: A \longrightarrow B$ a ring homomorphism. Let I be an ideal in A and denote by $p: A \longrightarrow A / I$ the usual projection.

If $\operatorname{ker}(f) \subset I$, then there exists a ring a) homomorphism $g: A / I \longrightarrow B$ such that $f=g \circ p$.	False. This would hold (by the First Isomorphism Theorem) if one replaced " $\operatorname{ker}(f) \subset I$ " with " $\operatorname{ker}(f) \supset I$ ". As a counterexample of the given statement, consider $A=B=\mathbb{Z}, f=\mathrm{id}_{\mathbb{Z}}$ and $I=2 \mathbb{Z}$. There exists no ring homomorphism $g: \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \mathbb{Z}$ (because $0 \longmapsto 0$ and $1 \longmapsto 1$ imply that $\mathbb{Z} / 2 \mathbb{Z} \ni 0=2=1+1 \longmapsto 1+1=2 \neq 0 \in \mathbb{Z}$ is a contradiction).
If B is a field, then b) $A / \operatorname{ker}(f)$ is an integral domain.	True. Since B is a field, its subring $\operatorname{im}(f)$ is an integral domain. Then we can conclude by observing that there exists an isomorphism $g: A / \operatorname{ker}(f) \cong \operatorname{im}(f) \subset B$ by the First Isomorphism Theorem.
If f is injective, then A c) is isomorphic to a subring of B.	True. If A is injective, then $\operatorname{ker}(f)=0$ and the projection p is an isomorphism, so that $A \cong A / \operatorname{ker}(f) \operatorname{im}(f) \subset B$.
For every $b \in B$, there exists a unique ring d) homomorphism $h: A[X] \longrightarrow B$ sending $X \longmapsto b$.	False. In order to obtain a unique h, by the characterization of morphisms from a polynomial ring given in class, one needs to specify the map on the coefficients as well (e.g., ask that $h(X)=b$ and $\left.\left.h\right\|_{A}=f\right)$. As a counterexample of the given statement, consider $A=B=\mathbb{C}, b=0$. Then there exists a unique ring homomorphism $h: \mathbb{C}[X] \longrightarrow \mathbb{C}$ sending $X \longmapsto 0$ and such that $\left.h\right\|_{\mathbb{C}}=\mathrm{id}_{\mathbb{C}}$ (it is the evaluation at 0) and a unique ring homomorphism $h^{\prime}: \mathbb{C}[X] \longrightarrow \mathbb{C}$ sending $X \longmapsto 0$ and such that $\left.h^{\prime}\right\|_{\mathbb{C}}$ is the complex conjugation. Clearly $h \neq h^{\prime}$, because $h(i)=i \neq-i=h^{\prime}(i)$.
If $J \subset B$ is a prime e) ideal, then $f^{-1}(J)$ is a prime ideal in A.	True. Let $q: B \longrightarrow B / J$ be the natural projection. As J is a prime ideal, B / J is an integral domain. Then $\operatorname{ker}(q \circ f)=f^{-1}(J)$ and by the First Isomorphism Theorem there is an injection $A /\left(f^{-1}(J)\right) \longrightarrow B / J$. Hence $A /\left(f^{-1}(J)\right)$ is an integral domain as well and $\left(f^{-1}(J)\right)$ is a prime ideal in A.

6. Let $R=\mathbb{Z} / 15 \mathbb{Z}$.

a) R contains precisely 2 prime ideals.	True. The ideals of R are the preimages under the projection $p: \mathbb{Z} \longrightarrow \mathbb{Z} / 15 \mathbb{Z}$ of the ideals of \mathbb{Z} containing $15 \mathbb{Z}$. Hence the ideals of R are $R=\mathbb{Z} / 15 \mathbb{Z}, 3 \mathbb{Z} / 15 \mathbb{Z}, 5 \mathbb{Z} / 15 \mathbb{Z}, 15 \mathbb{Z} / 15 \mathbb{Z}=0$ among which $3 \mathbb{Z} / 15 \mathbb{Z}$ and $5 \mathbb{Z} / 15 \mathbb{Z}$ are seen to be prime (because the corresponding quotients of R are fields of 3 and 5 elements respectively), while R is not prime by definition and 0 does contains $3 \cdot 5$, but neither 3 nor 5 .
b) $R[X]$ is a PID.	False. $R[X]$ is not an integral domain (since $3 \cdot 5=0$), so it cannot be a PID.
c) The ideal generated by X in $R[X]$ is maximal.	False. The given ideal (X) is the kernel of the evaluation map $R[X] \longrightarrow R$ at 0 , which is clearly surjective. By the First Isomorphism Theorem, $R[X] /(X) \cong R$, which is not a field. Hence (X) is not maximal.
d) $\operatorname{card}\left(R^{\times}\right)=8$	True. The units of R are given by the classes $a+15 \mathbb{Z}$ such that $\operatorname{gcd}(a, 15)=1$. Hence $R^{\times}=\{1,2,4,7,8,11,13,14\}$ contains eight elements.
There exists precisely one ring homomorphism $R \longrightarrow \mathbb{Z}$.	False. A ring homomorphism $R \longrightarrow \mathbb{Z}$ would have to send $0 \longmapsto 0$, $1 \longmapsto 1$ and hence $0=15 \cdot 1 \longmapsto 15 \neq 0$. This implies that there is no ring homomorphism $R \longrightarrow \mathbb{Z}$.

7.

A free \mathbb{Z}-module has a) no torsion.	True. A free \mathbb{Z}-module is isomorphic to $\mathbb{Z}^{(I)}$ where I is a set. But $\mathbb{Z}^{(I)}$ has no torsion: if $0 \neq x=\left(x_{i}\right)_{i \in I} \in \mathbb{Z}^{(I)}$, then $x_{i_{0}} \neq 0$ for some $i_{0} \in I$, and if for $n \in \mathbb{Z} \backslash\{0\}$ we write $n \cdot x=\left(y_{i}\right)_{i \in I}$, we see that $y_{i_{0}}=n x_{i_{0}} \neq 0$, so that $n \cdot x \neq 0$.
b) A free \mathbb{Z}-module is finitely generated.	False. The free module $\mathbb{Z}^{(\mathbb{Z})}$ is not finitely generated.
There are, up to c) isomorphism, 3 different abelian groups of 18 elements.	False. By the classification of finitely generated modules over a PID, abelian groups (i.e., \mathbb{Z}-modules) of 18 elements are all isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus H$, where H is an abelian group of 9 elements. There are then two possibilities: either $H \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ or $H \cong \mathbb{Z} / 9 \mathbb{Z}$, which give a total of 2 non-isomorphic abelian groups of 18 elements.
There are, up to isomorphism, 4 d) different abelian group of 100 elements.	True. Similarly as in c), abelian groups (i.e., \mathbb{Z}-modules) of 100 elements are all isomorphic to $H_{2} \oplus H_{5}$, where H_{2} is an abelian group of 2^{2} elements and H_{5} is an abelian group of 5^{2} elements. There are then two possibilities for $H_{2}\left(H_{2} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}\right.$ or $\left.H_{2} \cong \mathbb{Z} / 4 \mathbb{Z}\right)$ and two for $H_{5}\left(H_{5} \cong \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}\right.$ or $\left.H_{5} \cong \mathbb{Z} / 25 \mathbb{Z}\right)$, which give a total of $2 \cdot 2=4$ non-isomorphic abelian groups of 100 elements.
e) The \mathbb{Z}-module \mathbb{Q} is free.	False. See Assignment 13, Exercise 5 for an argument.

8. Let L / K be a field extension.

If L / K is of finite
a) degree, then it is algebraic.
If $f \in K[T]$ has no
b) roots in L, then it is irreducible in $K[T]$.
If $\alpha \in L$ is algebraic,
c) then $\operatorname{deg}(\operatorname{irr}(\alpha ; K))=$ $[K(\alpha): K]$.

If $\alpha, \beta \in L$ are
d)
transcendental over K,
then $\alpha+\beta$ is transcendental over K.

If $\alpha \in L \backslash K$ and
e) $\alpha^{2} \in K$, then
$\operatorname{irr}(\alpha ; K)=X^{2}-\alpha^{2}$.

True. This was seen in class: a field extension L / K is of finite degree if and only if it is algebraic and finitely generated.

False. For example, let $L=K=\mathbb{Q}$ and $f=\left(X^{2}-2\right)\left(X^{2}-3\right) \in \mathbb{Q}$.
The polynomial f is clearly not irreducible, although it has no roots in \mathbb{Q}.

True. This equality was seen in class.

False. Let $K=\mathbb{Q}, L=\mathbb{C}, \alpha=\pi$ and $\beta=2-\pi$. As seen in class, π is transcendental over \mathbb{Q}. Then $\mathbb{Q}(\pi)=\mathbb{Q}(1-\pi)$ is an extension of \mathbb{Q} of infinite degree, so that β is transcendental over \mathbb{Q} as well, whereas $\alpha+\beta=2 \in \mathbb{Q}$ is not.
True. The polynomial $X^{2}-\alpha^{2} \in K[X]$ has root α and is monic. It is irreducible, because otherwise it would have a linear factor in $K[X]$, that is, it would have a root in K, which would imply that $\alpha \in K$ (because the roots of $X^{2}-\alpha^{2}$ in K are $\pm \alpha$) which contradicts our assumption. Hence $X^{2}-\alpha^{2}$ is the minimal polynomial of α over K.

a) There exists a finite field with 250 elements.	False. The cardinality of a finite field is, as seen in class, a power of a prime number, but $250=2 \cdot 5^{3}$ is not a power of a prime.
Any finite field with 81 b) elements has characteristic 3 .	True. As seen in class, a field of $81=3^{4}$ elements is a field extension of \mathbb{F}_{3}. Since \mathbb{F}_{3} has characteristic 3 , this must be the case for each of its extensions.
The polynomial c) $X^{120}-1 \in \mathbb{F}_{11}[X]$ has 10 roots in \mathbb{F}_{11}.	True. Each element $x \in \mathbb{F}_{11}$ satisfies $x^{11}=x$, which implies that $x^{121}=\left(x^{11}\right)^{11}=x^{11}=x$ for each $x \in \mathbb{F}_{11}$. For $x \neq 0$, we can divide by x to obtain $x^{120}-1$. Hence all the 10 invertible (i.e., non-zero) elements of \mathbb{F}_{11} are roots of $X^{120}-1$, while clearly 0 is not.
If E is a finite field and F / E is an algebraic field extension, then F is a finite field.	False. The algebraic closure \bar{E} of E is an algebraic extension by definition, but it has infinite cardinality, because it contains subfields with cardinality equal to an arbitrarily high power of the characteristic of E.
If E is a finite field with m elements and F / E is a finite field extension of E, then $\operatorname{card}(F)$ is a multiple of m.	True. The cardinality of F is $\operatorname{card}(E)^{\operatorname{dim}_{E}(F)}=m^{[F: E]}$, hence it a positive power of m. As such, it is a multiple of m.

10. Consider the polynomial $f=X^{5}-1 \in \mathbb{Q}[X]$. Let K / \mathbb{Q} be the splitting field of f in \mathbb{C}.

a) K / \mathbb{Q} has degree divisible by 6 .	False. Since the roots of $X^{5}-1$ are all powers of $e^{\frac{2 \pi i}{5}}$, we know that $K=\mathbb{Q}\left(e^{\frac{2 \pi i}{5}}\right)$. Then $1 \leq[K: \mathbb{Q}]=\left[\mathbb{Q}\left(e^{\frac{2 \pi i}{5}}\right): \mathbb{Q}\right]=\operatorname{deg}\left(\operatorname{irr}\left(e^{\frac{2 \pi i}{5}}, \mathbb{Q}\right)\right)$ $\leq \operatorname{deg}\left(X^{5}-1\right)=5$, so that $[K: \mathbb{Q}]$ cannot be a multiple of 6 .
f is the minimal b) polynomial of $e^{\frac{2 \pi i}{5}}$ over \mathbb{Q}.	False. The polynomial f has the root 1 in \mathbb{Q}, so in particular is not irreducible and it cannot be the minimal polynomial of $e^{\frac{2 \pi i}{5}}$. In fact, $X^{5}-1=(X-1)\left(X^{4}+X^{3}+X^{2}+X+1\right)$ and the minimal polynomial of $e^{\frac{2 \pi i}{5}}$ over \mathbb{Q} is $X^{4}+X^{3}+X^{2}+X+1$.
c) $\cos \left(\frac{2 \pi}{5}\right) \in K$	True. $\cos \left(\frac{2 \pi}{5}\right)=\frac{1}{2}\left(e^{\frac{2 \pi i}{5}}+e^{-\frac{2 \pi i}{5}}\right)$, and K contains $e^{\frac{2 \pi i}{5}}$ and $e^{-\frac{2 \pi i}{5}}$ since they are roots of $X^{5}-1$.
Any field d) homomorphism $K \longrightarrow \mathbb{C}$ has image equal to K.	True. Such a field homomorphism has image inside K, since $\mathbb{Q}\left(e^{\frac{2 \pi i}{5}}\right)=K$ by a) and $e^{\frac{2 \pi i}{5}}$ must be mapped to a root of $X^{5}-1$. But a field homomorphism is always injective, so that the resulting \mathbb{Q}-linear map $K \longrightarrow K$ must then be an isomorphism because K is a finite dimensional \mathbb{Q}-vector space, meaning that the image is K.
e) $\mathbb{Q}\left(e^{\frac{2 \pi i}{5}}\right)=K$.	True. See part a).

