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1. Let G be a group and H a subgroup of G.

a)
The index of H in G is

a prime number.
False. For example, 4Z is a subgroup of Z of index 4.

b)
If H is abelian, then H

is normal in G.

False. For example, consider G = S3 and its abelian subgroup

H = {id, (1 2)}. Then (1 3)(1 2)(1 3)−1 = (3 2) 6∈ H, so that H is not

normal in G.

c)
If G is abelian, then H

is normal in G.

True. For each h ∈ H and g ∈ G, abelianity of G implies that

ghg−1 = hgg−1 = h ∈ H.

d)

If H is abelian and the

index of H in G is two,

then G is abelian.

False. For example, consider G = S3 and H = A3.

e)

If G is simple, then

either H = G or

H = {1}.

False. If G is simple, then it can still contain non-trivial proper

subgroups, as long as they are not normal. For example, take A5,

which is simple as proven in class, but contains the subgroup

〈(1 2)(3 4)〉 = {id, (1 2)(3 4)}.

2. Let G be a group acting on a set X and H a subgroup of G.

a)

If the action of G is

faithful, so is the

action of H on X.

True. Faithfulness of the action means that the corresponding map

G −→ Aut(X) is injective. Composing this map with the inclusion

H −→ G we obtain that the action of H on X, corresponding to the

resulting injective map H −→ Aut(X), is faithful as well.

b)

If the action of G has

no fixed point, so does

the action of H on X.

False. Let G = S2 act on X = {1, 2} in the usual way and H = {id}.
While G has no fixed point, H fixes the whole X 6= ∅.

c)

If the action of G is

transitive, so is the

action of H on X.

False. The same example given in b) is a counterexample.

d)

For each x ∈ X,

StabH(x) =

StabG(x) ∩H.

True. It follows immediately by definition.

e)

Each H-orbit of X is

contained in a G-orbit

of X.

True. If y ∈ X is in the H-orbit of x, then y = h · x for some

h ∈ H ⊂ G, so that y is in the G-orbit of x. This implies that the

H-orbit of x is contained in the G-orbit of x.
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3.

a) A7 is simple. True. We saw in class that An is simple for each n ∈ N≥5.

b)

Every permutation has

a unique decomposition

into a product of

transpositions.

False. For example, S3 3 id = (1 2)(1 2) = (1 3)(1 3).

c)

One can write down

(1 2 3 4 5) as a product

of exactly 5

transpositions.

False. (1 2 3 4 5) has signature 1 (it is equal to (1 5)(1 4)(1 3)(1 2)),

while a product of 5 transposition has signature −1.

d)

The action of Sn on

{1, . . . , n} is transitive

and faithful.

True. By definition, a permutation acts trivially on each

j ∈ {1, . . . , n} if and only if it is the identity (faithfulness). Moreover,

for each i, j ∈ {1, . . . , n}, the permutation (i j) sends i to j

(transitivity).

e)

The permutations

(1 2 3)(4 5) and

(1 5)(2 3 4) are

conjugated in S8.

True. The two permutations have the same cyclic type, which

characterize a conjugacy class as seen in the lecture (the conjugacy

class of the given permutations corresponds to the partition

8 = 1 + 1 + 1 + 2 + 3).

4. Let A be a commutative ring and I an ideal of A.

a)

If f, g ∈ A[X] have

both degree 3, then

f · g has degree 6.

False. For example, consider A = Z/4Z and the polynomials

f = g = 2X3 + 1 of degree 3. Then fg = 4X6 + 4X3 + 1 = 1 has

degree 0.

b)

If I is a maximal ideal,

then A/I is an integral

domain.

True. By definition, if I is maximal, then A/I is a field, which

implies that it is an integral domain.

c)
If A is a UFD, then

A[X] is a PID.

False. For example, consider A = Z. It is a UFD, but Z[X] is not a

PID (see Assignment 4, Exercise 4(c)).

d)
If A is a PID, then A/I

is a PID.

False. For example, consider A = Z and I = 4Z. Since Z/4Z is not

an integral domain, it is not a PID.

e)

The set of polynomials

in A[X] whose

coefficients lie in I is

an ideal in A[X].

True. Let J be the given subset A[X] consisting of polynomials

whose coefficients lie in I. Clearly, 0 ∈ J . Moreover, for each

f =
∑

i aiX
i, g =

∑
i biX

i ∈ J (meaning, ai, bi ∈ I for each i) and

h =
∑

i ciX
i ∈ R[X], we see that f − g =

∑
i(ai − bi)X i ∈ J because

ai − bi ∈ I for each i and that fh =
∑

i(
∑i

k=0 akbi−k)X
i because

akbi−k ∈ I for each i and k and I is closed under the sum. This means

that the axioms of ideal are all satisfied.
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5. Let A and B be commutative rings and f : A −→ B a ring homomorphism. Let I be

an ideal in A and denote by p : A −→ A/I the usual projection.

a)

If ker(f) ⊂ I, then

there exists a ring

homomorphism

g : A/I −→ B such

that f = g ◦ p.

False. This would hold (by the First Isomorphism Theorem) if one

replaced “ker(f) ⊂ I” with “ker(f) ⊃ I”. As a counterexample of the

given statement, consider A = B = Z, f = idZ and I = 2Z. There

exists no ring homomorphism g : Z/2Z −→ Z (because 0 7−→ 0 and

1 7−→ 1 imply that Z/2Z 3 0 = 2 = 1 + 1 7−→ 1 + 1 = 2 6= 0 ∈ Z is a

contradiction).

b)

If B is a field, then

A/ ker(f) is an integral

domain.

True. Since B is a field, its subring im(f) is an integral domain.

Then we can conclude by observing that there exists an isomorphism

g : A/ ker(f) ∼= im(f) ⊂ B by the First Isomorphism Theorem.

c)

If f is injective, then A

is isomorphic to a

subring of B.

True. If A is injective, then ker(f) = 0 and the projection p is an

isomorphism, so that A ∼= A/ ker(f)im(f) ⊂ B.

d)

For every b ∈ B, there

exists a unique ring

homomorphism

h : A[X] −→ B sending

X 7−→ b.

False. In order to obtain a unique h, by the characterization of

morphisms from a polynomial ring given in class, one needs to specify

the map on the coefficients as well (e.g., ask that h(X) = b and

h|A = f). As a counterexample of the given statement, consider

A = B = C, b = 0. Then there exists a unique ring homomorphism

h : C[X] −→ C sending X 7−→ 0 and such that h|C = idC (it is the

evaluation at 0) and a unique ring homomorphism h′ : C[X] −→ C
sending X 7−→ 0 and such that h′|C is the complex conjugation.

Clearly h 6= h′, because h(i) = i 6= −i = h′(i).

e)

If J ⊂ B is a prime

ideal, then f−1(J) is a

prime ideal in A.

True. Let q : B −→ B/J be the natural projection. As J is a prime

ideal, B/J is an integral domain. Then ker(q ◦ f) = f−1(J) and by the

First Isomorphism Theorem there is an injection

A/(f−1(J)) −→ B/J . Hence A/(f−1(J)) is an integral domain as well

and (f−1(J)) is a prime ideal in A.
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6. Let R = Z/15Z.

a)
R contains precisely 2

prime ideals.

True. The ideals of R are the preimages under the projection

p : Z −→ Z/15Z of the ideals of Z containing 15Z. Hence the ideals of

R are R = Z/15Z, 3Z/15Z, 5Z/15Z, 15Z/15Z = 0 among which

3Z/15Z and 5Z/15Z are seen to be prime (because the corresponding

quotients of R are fields of 3 and 5 elements respectively), while R is

not prime by definition and 0 does contains 3 · 5, but neither 3 nor 5.

b) R[X] is a PID.
False. R[X] is not an integral domain (since 3 · 5 = 0), so it cannot be

a PID.

c)
The ideal generated by

X in R[X] is maximal.

False. The given ideal (X) is the kernel of the evaluation map

R[X] −→ R at 0, which is clearly surjective. By the First

Isomorphism Theorem, R[X]/(X) ∼= R, which is not a field. Hence

(X) is not maximal.

d) card(R×) = 8

True. The units of R are given by the classes a+ 15Z such that

gcd(a, 15) = 1. Hence R× = {1, 2, 4, 7, 8, 11, 13, 14} contains eight

elements.

e)

There exists precisely

one ring

homomorphism

R −→ Z.

False. A ring homomorphism R −→ Z would have to send 0 7−→ 0,

1 7−→ 1 and hence 0 = 15 · 1 7−→ 15 6= 0. This implies that there is no

ring homomorphism R −→ Z.
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7.

a)
A free Z-module has

no torsion.

True. A free Z-module is isomorphic to Z(I) where I is a set. But Z(I)

has no torsion: if 0 6= x = (xi)i∈I ∈ Z(I), then xi0 6= 0 for some i0 ∈ I,

and if for n ∈ Z \ {0} we write n · x = (yi)i∈I , we see that

yi0 = nxi0 6= 0, so that n · x 6= 0.

b)
A free Z-module is

finitely generated.
False. The free module Z(Z) is not finitely generated.

c)

There are, up to

isomorphism, 3

different abelian groups

of 18 elements.

False. By the classification of finitely generated modules over a PID,

abelian groups (i.e., Z-modules) of 18 elements are all isomorphic to

Z/2Z⊕H, where H is an abelian group of 9 elements. There are then

two possibilities: either H ∼= Z/3Z× Z/3Z or H ∼= Z/9Z, which give a

total of 2 non-isomorphic abelian groups of 18 elements.

d)

There are, up to

isomorphism, 4

different abelian group

of 100 elements.

True. Similarly as in c), abelian groups (i.e., Z-modules) of 100

elements are all isomorphic to H2 ⊕H5, where H2 is an abelian group

of 22 elements and H5 is an abelian group of 52 elements. There are

then two possibilities for H2 (H2
∼= Z/2Z× Z/2Z or H2

∼= Z/4Z) and

two for H5 (H5
∼= Z/5Z× Z/5Z or H5

∼= Z/25Z), which give a total of

2 · 2 = 4 non-isomorphic abelian groups of 100 elements.

e)
The Z-module Q is

free.
False. See Assignment 13, Exercise 5 for an argument.

8. Let L/K be a field extension.

a)

If L/K is of finite

degree, then it is

algebraic.

True. This was seen in class: a field extension L/K is of finite degree

if and only if it is algebraic and finitely generated.

b)

If f ∈ K[T ] has no

roots in L, then it is

irreducible in K[T ].

False. For example, let L = K = Q and f = (X2 − 2)(X2 − 3) ∈ Q.

The polynomial f is clearly not irreducible, although it has no roots in

Q.

c)

If α ∈ L is algebraic,

then deg(irr(α;K)) =

[K(α) : K].

True. This equality was seen in class.

d)

If α, β ∈ L are

transcendental over K,

then α + β is

transcendental over K.

False. Let K = Q, L = C, α = π and β = 2− π. As seen in class, π is

transcendental over Q. Then Q(π) = Q(1− π) is an extension of Q of

infinite degree, so that β is transcendental over Q as well, whereas

α + β = 2 ∈ Q is not.

e)

If α ∈ L \K and

α2 ∈ K, then

irr(α;K) = X2 − α2.

True. The polynomial X2 − α2 ∈ K[X] has root α and is monic. It is

irreducible, because otherwise it would have a linear factor in K[X],

that is, it would have a root in K, which would imply that α ∈ K
(because the roots of X2 − α2 in K are ±α) which contradicts our

assumption. Hence X2 − α2 is the minimal polynomial of α over K.
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9.

a)
There exists a finite

field with 250 elements.

False. The cardinality of a finite field is, as seen in class, a power of a

prime number, but 250 = 2 · 53 is not a power of a prime.

b)

Any finite field with 81

elements has

characteristic 3.

True. As seen in class, a field of 81 = 34 elements is a field extension

of F3. Since F3 has characteristic 3, this must be the case for each of

its extensions.

c)

The polynomial

X120 − 1 ∈ F11[X] has

10 roots in F11.

True. Each element x ∈ F11 satisfies x11 = x, which implies that

x121 = (x11)11 = x11 = x for each x ∈ F11. For x 6= 0, we can divide by

x to obtain x120 − 1. Hence all the 10 invertible (i.e., non-zero)

elements of F11 are roots of X120 − 1, while clearly 0 is not.

d)

If E is a finite field and

F/E is an algebraic

field extension, then F

is a finite field.

False. The algebraic closure E of E is an algebraic extension by

definition, but it has infinite cardinality, because it contains subfields

with cardinality equal to an arbitrarily high power of the

characteristic of E.

e)

If E is a finite field

with m elements and

F/E is a finite field

extension of E, then

card(F ) is a multiple of

m.

True. The cardinality of F is card(E)dimE(F ) = m[F :E], hence it a

positive power of m. As such, it is a multiple of m.

10. Consider the polynomial f = X5 − 1 ∈ Q[X]. Let K/Q be the splitting field of f in C.

a)
K/Q has degree

divisible by 6.

False. Since the roots of X5 − 1 are all powers of e
2πi
5 , we know that

K = Q(e
2πi
5 ). Then 1 ≤ [K : Q] = [Q(e

2πi
5 ) : Q] = deg(irr(e

2πi
5 ,Q))

≤ deg(X5 − 1) = 5, so that [K : Q] cannot be a multiple of 6.

b)

f is the minimal

polynomial of e
2πi
5 over

Q.

False. The polynomial f has the root 1 in Q, so in particular is not

irreducible and it cannot be the minimal polynomial of e
2πi
5 . In fact,

X5 − 1 = (X − 1)(X4 +X3 +X2 +X + 1) and the minimal

polynomial of e
2πi
5 over Q is X4 +X3 +X2 +X + 1.

c) cos(2π
5

) ∈ K
True. cos(2π

5
) = 1

2
(e

2πi
5 + e−

2πi
5 ), and K contains e

2πi
5 and e−

2πi
5 since

they are roots of X5 − 1.

d)

Any field

homomorphism

K −→ C has image

equal to K.

True. Such a field homomorphism has image inside K, since

Q(e
2πi
5 ) = K by a) and e

2πi
5 must be mapped to a root of X5 − 1. But

a field homomorphism is always injective, so that the resulting

Q-linear map K −→ K must then be an isomorphism because K is a

finite dimensional Q-vector space, meaning that the image is K.

e) Q(e
2πi
5 ) = K. True. See part a).


