Serie 5

Aufgabe 1

Sei die Funktion f mit Definitionsbereich D differenzierbar. Dann lässt sich f in der Nähe einer Stelle $x_0 \in D$ mithilfe der Tangenten an die Funktion f in diesem Punkt x_0 approximieren (eine Gerade!). Die Gleichung der Tangenten an die Funktion f im Punkt x_0 ist $p(x) = f(x_0) + f'(x_0)(x - x_0)$. (Siehe auch Folien Kapitel 4: Linearisierung einer Funktion.)

(a) Seien $f(x) = \sqrt{x}$ und $x_0 = 100$. Bestimmen Sie die Tangente p(x) an f(x) an der Stelle x_0 .

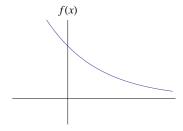
Werten Sie f(x) und p(x) für x = 101, 105, 110 aus.

Wie gross sind jeweils der absolute Fehler $\Delta_a f(x) = |p(x) - f(x)|$ und der relative Fehler $\Delta_r f(x) = \left|\frac{p(x) - f(x)}{f(x)}\right|$ der obigen Approximierung von f(x) durch p(x) an den Stellen x = 101, 105, 110?

- (b) Bestimmen Sie die Tangente p(x)jeweils an der Stelle x_0 für folgende Funktionen f.
 - i) $f(x) = \sqrt[3]{x + x^3}$ mit $D = [0, \infty)$, im Punkt $x_0 = 1$.
 - ii) $f(x) = \ln\left(x^{\frac{2}{3}}\right)$ mit $D = (0, \infty)$, im Punkt $x_0 = 1$.
 - iii) $f(x) = e^{-\sin(x)}$ mit $D = \mathbb{R}$, im Punkt $x_0 = 0$.
 - iv) $f(x) = \frac{1}{1+x^4}$ mit $D = \mathbb{R}$, im Punkt $x_0 = 1$.

Aufgabe 2

(a) Die Abbildung zeigt den Graphen einer zweimal differenzierbaren Funktion f. Begründen Sie, welche der Funktionen f, f' und f'' nur negative und welche nur positive Werte annimmt.



- (b) Der Graph einer differenzierbaren Funktion f mit D = [a, b] habe in jedem Punkt eine Tangente mit positiver Steigung. Welche der folgenden Aussagen sind richtig, welche falsch, welche können nicht beantwortet werden?
 - (i) f(b) > f(a).
 - (ii) f(a) > f(b).
 - (iii) f(a) = f(b).
 - (iv) Der Graph von f beschreibt auf [a, b] eine Linkskurve.
 - (v) Der Graph von f beschreibt auf [a, b] eine Rechtskurve.
- (c) Entscheiden Sie ohne Berechnung der 1. Ableitung, ob die folgende Funktion $f(x) = \frac{1-x^2}{1+x^2}$ ein globales Maximum hat oder nicht. **Hinweis:** Schreiben Sie den Zähler als $1 - x^2 = -1 - x^2 + 2$.

(d) Entscheiden Sie ohne Berechnung der 1. Ableitung, ob die folgende Funktion $f(x) = e^{-x^2} \cos x$ ein globales Maximum hat.

Hinweis: Für $x \neq 0$ gilt $0 < e^{-x^2} < 1$.

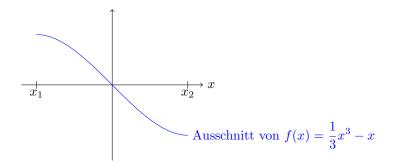
Aufgabe 3

Der Graph der Funktion $f(x) = \frac{1}{3}x^3 - x$ ist in einem Intervall (x_1, x_2) streng monoton fallend.

(a) Bestimmen Sie x_1 und x_2 .

Welche Werte nimmt f für $x \in (x_1, x_2)$ an? Anders gesagt, was ist der Wertebereich der Funktion f wenn wir die Funktion nur auf dem Definitionsbereich $D_f = (x_1, x_2)$ betrachten?

(b) Der Graph von f in diesem Ausschnitt (x_1, x_2) sieht folgendermassen aus:



Betrachten wir also die Funktion f nur auf dem Definitionsbereich $D_f =$ (x_1,x_2) sehen wir anhand des Graphen von f, dass die Funktion f umkehrbar ist. Skizzieren Sie den Graphen von f^{-1} .

- (c) Wo ist f^{-1} differenzierbar?
- (d) Bestimmen Sie $(f^{-1})'(0)$.

Aufgabe 4

Gegeben sei die Funktion

$$f(x) = \frac{x(ax-1)}{(x-1)(x+2)}$$

wobei $a \in \mathbb{R} \setminus \{0\}$ eine **feste Zahl** ist.

- (a) Bestimmen Sie den Definitionsbereich. Wie lauten die Null- und Polstellen? Hinweis: Fallunterscheidung für a
- (b) Wie verhält sich die Funktion asymptotisch für $x \to \infty$ und $x \to -\infty$?
- (c) Wie muss a gewählt werden, damit x = -1 ein kritischer Punkt von f ist?
- (d) Nehmen Sie nun an, dass $a \in (-\frac{1}{2}, 1)$. Zeigen Sie, dass in diesem Fall der Wertebereich W der Funktion f ganz \mathbb{R} ist. Ist dies auch noch der Fall falls $a = -\frac{1}{2}$ oder a = 1?

Abgabe der schriftlichen Aufgaben

Dienstag, den 23.10.2016 / Mittwoch, den 24.10.2016 in den Übungsstunden und ausserhalb der Zeiten in den Fächern im HG E 66.1.