ETH Zürich
Prof. Dr. A. Iozzi
Summer 2019
13 August

Exam Analysis III D-MAVT, D-MATL

Please fill!

Surname:	
First Name:	
Student Card Nr.:	

Please do not fill!

Exercise	Value	Points	Control
1	8		
2	10		
3	15		
4	6		
5	8		
Total	47		

Please do not fill!
Completeness

Important: Before the exam starts, please

- Turn off your mobile phone and place it inside your briefcase/backpack.
- Put your bags on the floor. No bags on the desk!
- Place your Student Card (Legi) on the desk.
- Fill in the front page of the exam with your generalities.

During the exam, please

- Start every exercise on a new piece of paper.
- Put your name on the top right corner of every page.
- You are expected to motivate your answers. Please write down calculations and intermediate results.
- Provide at most one solution to each exercise.
- Do not write with pencils. Please avoid using red or green ink pens.

```
Allowed aids:
- 20 pages (= 10 sheets) DIN A4 handwritten or typed personal summary.
- An English (or English-German) dictionary.
```


Not allowed:

```
No further aids are allowed. In particular neither communication devices, nor pocket calculators.
```


Good Luck!

Laplace Transforms: $\quad(F=\mathcal{L}(f))$

	$\mathrm{f}(\mathrm{t})$	F(s)		$\mathrm{f}(\mathrm{t})$	F(s)		$\mathrm{f}(\mathrm{t})$	$F(s)$
1)	1	$\frac{1}{s}$	5)	$t^{a}, a>0$	$\frac{\Gamma(a+1)}{s^{a+1}}$	9)	$\cosh (\mathrm{at})$	$\frac{s}{s^{2}-a^{2}}$
2)	t	$\frac{1}{s^{2}}$	6)	$e^{a t}$	$\frac{1}{s-a}$	10)	$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
3)	t^{2}	$\frac{2}{s^{3}}$	7)	$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$	11)	$u(t-a)$	$\frac{1}{s} e^{-a s}$
4)	$t^{n}, n \in \mathbb{Z}_{\geqslant 0}$	$\frac{n!}{s^{n+1}}$	8)	$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$	12)	$\delta(t-a)$	$e^{-a s}$

($\Gamma=$ Gamma function, $u=$ Heaviside function, $\delta=$ Delta function)

Remember that:

- D_{R} is the disk of radius $R>0$, centered in the origin:
$D_{R}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leqslant R^{2}\right\}$ and ∂D_{R} is its boundary: $\partial D_{R}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=R^{2}\right\}$.
- You might need to use in some exercises the following integrals:
$\int \sin ^{2}(\vartheta) d \vartheta=\frac{1}{2}(\vartheta-\sin (\vartheta) \cos (\vartheta)) \quad$ (+ constant)
$\int \cos ^{2}(\vartheta) d \vartheta=\frac{1}{2}(\vartheta+\sin (\vartheta) \cos (\vartheta)) \quad$ (+ constant)
- For $a>0$, the Fourier transform of the gaussian function $e^{-a x^{2}}$ is

$$
\widehat{\mathrm{e}^{-a x^{2}}}=\frac{1}{\sqrt{2 \mathrm{a}}} \mathrm{e}^{-\frac{w^{2}}{4 \mathrm{a}}}
$$

1. Laplace Transform (8 Points)

Find the solution $\mathrm{f}:[0,+\infty) \rightarrow \mathbb{R}$ of the following integral equation:

$$
\begin{equation*}
f(t)=t^{3}+\int_{0}^{t} e^{-(t-\tau)} f(\tau) d \tau \tag{1}
\end{equation*}
$$

2. Short Questions (10 Points)

Answer the following questions. You can use any formula from the script.
a) (2 Points) The integral

$$
h(x)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{\sin (\omega) \cos (\omega x)}{\omega} d \omega
$$

is the Fourier integral of the function

$$
f(x)= \begin{cases}1, & |x| \leqslant 1 \\ 0 . & |x|>1\end{cases}
$$

Find the explicit values of $h(x)$ for each $x \in \mathbb{R}$.
b) (2 Points) Consider the following PDE:

$$
x u_{x x}+2 y u_{x y}+x u_{y y}=e^{-x} u+u_{x}
$$

In which region of the plane $(x, y) \in \mathbb{R}^{2}$ is it elliptic?
c) (3 Points) Consider the solution of the following wave equation:

$$
\begin{cases}u_{t t}=c^{2} u_{x x}, & x \in \mathbb{R}, t \geqslant 0 \\ u(x, 0)=e^{2 x}, & x \in \mathbb{R} \\ u_{t}(x, 0)=0 . & x \in \mathbb{R}\end{cases}
$$

Find the evolution in time of the point $x=0$:

$$
u(0, t)=?
$$

d) (3 Points) Consider the following Laplace equation on the unit disk:

$$
\begin{cases}\nabla^{2} u=0, & \text { in } D_{1} \\ u=x+5 y^{2} . & \text { on } \partial D_{1}\end{cases}
$$

Find the value of the solution in the center:

$$
u(0,0)=?
$$

3. Wave Equation (15 Points)

Find the solution of following wave equation with homogeneous Neumann conditions ($=$ the derivative u_{x} on the boundary is zero):

$$
u=u(x, t) \quad \text { s.t. } \quad \begin{cases}u_{t t}=c^{2} u_{x x}, & x \in[0, \pi], t \geqslant 0 \tag{2}\\ u_{x}(0, t)=u_{x}(\pi, t)=0, & t \geqslant 0 \\ u(x, 0)=1+\cos (4 x), & x \in[0, \pi] \\ u_{t}(x, 0)=3 . & x \in[0, \pi]\end{cases}
$$

Use the method of separation of variables, showing all the steps.

4. Laplace Equation and Maximum Principle (6 Points)

Consider the solution of the following Laplace problem on a disk D_{R} centered in the origin, of radius $R>0$:

$$
u=u(x, y) \quad \text { s.t. } \quad \begin{cases}\nabla^{2} u=0, & \text { in } D_{R} \tag{3}\\ u=\frac{e^{R}}{2 R^{2}}\left(x^{2}-y^{2}\right) . & \text { on } \partial D_{R}\end{cases}
$$

Find the unique $R>0$ such that the maximum of u on the disk is π :

$$
\max _{(x, y) \in D_{R}} u(x, y)=\pi
$$

5. Heat Equation via Fourier Transform (8 Points)

Remember that the solution of the heat equation

$$
\begin{cases}u_{t}=c^{2} u_{x x}, & x \in \mathbb{R}, t \geqslant 0 \\ u(x, 0)=f(x), & x \in \mathbb{R}\end{cases}
$$

has Fourier transform

$$
\widehat{\mathfrak{u}}(\omega, \mathrm{t})=\widehat{\mathrm{f}}(\omega) \mathrm{e}^{-\mathrm{c}^{2} \omega^{2} t}
$$

For some particular cases of f, this \widehat{u} can be recognised as the Fourier transform of some function, and the original solution $u=u(x, t)$ can be found.

Find the solution $u=u(x, t)$ of the following:

$$
\begin{cases}u_{t}=c^{2} u_{x x}, & t \geqslant 0, x \in \mathbb{R} \tag{4}\\ u(x, 0)=e^{-\frac{1}{2} x^{2}} . & x \in \mathbb{R}\end{cases}
$$

[Hint: The Fourier transform of this gaussian function $f(x)=e^{-\frac{1}{2} x^{2}}$ is recalled at the beginning of the exam.]

