Analysis III
 Exam Solutions

(Stefano D'Alesio: stefano.dalesio@math.ethz.ch)

Exercise	1	2	3	4	5	Total
Value	8	10	15	6	8	47

1. Laplace Transform (8 Points)

Find the solution $\mathrm{f}:[0,+\infty) \rightarrow \mathbb{R}$ of the following integral equation:

$$
\begin{equation*}
f(t)=t^{3}+\int_{0}^{t} e^{-(t-\tau)} f(\tau) d \tau \tag{1}
\end{equation*}
$$

Solution:

We apply the Laplace transform to both sides. We denote the Laplace transform of f by $F=\mathcal{L}(f)$. The integral on the right-hand side is a convolution:

$$
\int_{0}^{t} e^{-(t-\tau)} f(\tau) d \tau=\left(e^{-t} * f\right)(t)
$$

The Laplace transform of a convolution is the product of the Laplace transforms of the two functions, therefore:

$$
\mathcal{L}\left(e^{-t} * f\right)=\mathcal{L}\left(e^{-t}\right) \cdot \mathcal{L}(f)=\frac{1}{s+1} \cdot F(s) .
$$

Now we can transform the integral equation (1) into the algebraic equation

$$
\begin{aligned}
& F(s)=\frac{6}{s^{4}}+\frac{1}{s+1} \cdot F(s) \\
\Longrightarrow & \left(1-\frac{1}{s+1}\right) F(s)=\frac{6}{s^{4}} \\
\Longrightarrow & \frac{s}{s+1} F(s)=\frac{6}{s^{4}} \\
\Longrightarrow & F(s)=\frac{6}{s^{4}}+\frac{6}{s^{5}} .
\end{aligned}
$$

Finally we transform back to obtain:

$$
f(t)=\mathcal{L}^{-1}(F(s))=\mathcal{L}^{-1}\left(\frac{6}{s^{4}}+\frac{6}{s^{5}}\right)=t^{3}+\frac{t^{4}}{4} .
$$

2. Short Questions (10 Points)

Answer the following questions. You can use any formula from the script.
a) (2 Points) The integral

$$
h(x)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{\sin (\omega) \cos (\omega x)}{\omega} d \omega
$$

is the Fourier integral of the function

$$
f(x)= \begin{cases}1, & |x| \leqslant 1 \\ 0 . & |x|>1\end{cases}
$$

Find the explicit values of $h(x)$ for each $x \in \mathbb{R}$.

Solution:

The Fourier integral of a function has the same value of the function itself where the function is continuous.
In a point of discontinuity x_{0} the value of the Fourier integral is the average of the left and the right limit of f :

$$
h\left(x_{0}\right)=\frac{1}{2}\left(f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)\right) .
$$

In this case the points of discontinuity are $x_{0}= \pm 1$, both with average $1 / 2$, therefore:

$$
h(x)= \begin{cases}1, & |x|<1 \\ \frac{1}{2}, & |x|=1 \\ 0 . & |x|>1\end{cases}
$$

b) (2 Points) Consider the following PDE:

$$
x u_{x x}+2 y u_{x y}+x u_{y y}=e^{-x} u+u_{x}
$$

In which region of the plane $(x, y) \in \mathbb{R}^{2}$ is it elliptic?

Solution:

Writing the PDE in the form

$$
A u_{x x}+2 B u_{x y}+C u_{y y}=F\left(x, y, u, u_{x}, u_{y}\right),
$$

the elliptic condition is $A C-B^{2}>0$. In this case this means

$$
x^{2}-y^{2}>0
$$

or equivalently

$$
|x|>|y| .
$$

c) (3 Points) Consider the solution of the following wave equation:

$$
\begin{cases}u_{t t}=c^{2} u_{x x,}, & x \in \mathbb{R}, t \geqslant 0 \\ u(x, 0)=e^{2 x}, & x \in \mathbb{R} \\ u_{t}(x, 0)=0 . & x \in \mathbb{R}\end{cases}
$$

Find the evolution in time of the point $x=0$:

$$
u(0, t)=?
$$

Solution:

We can use D'Alembert's formula:

$$
u(0, t)=\frac{1}{2}(f(c t)+f(-c t))+\int_{-c t}^{c t} g(s) d s=\frac{1}{2}\left(e^{2 c t}+e^{-2 c t}\right)=\cosh (2 c t) .
$$

d) (3 Points) Consider the following Laplace equation on the unit disk:

$$
\begin{cases}\nabla^{2} u=0, & \text { in } D_{1} \\ u=x+5 y^{2} . & \text { on } \partial D_{1}\end{cases}
$$

Find the value of the solution in the center:

$$
u(0,0)=?
$$

Solution 1:

According to the mean value principle, the value in the center is the average of the function on the boundary. We write this function in polar coordinates

$$
f(\vartheta)=\cos (\vartheta)+5 \sin ^{2}(\vartheta)
$$

and we integrate if ${ }^{[1]}$ to get:

$$
\begin{aligned}
\mathfrak{u}(0,0) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\vartheta) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\cos (\vartheta)+5 \sin ^{2}(\vartheta)\right) d \vartheta= \\
& =\left.\frac{1}{2 \pi}\left[\sin (\vartheta)+\frac{5}{2} \vartheta-\frac{5}{2} \sin (\vartheta) \cos (\vartheta)\right]\right|_{\vartheta=0} ^{\vartheta=2 \pi}=\frac{5}{2} .
\end{aligned}
$$

[^0]
Solution 2:

We can also directly solve the equation and from the solution we will read the value $u(0,0)$. This is not recommended in general because usually solving the equation is more difficult than computing an integral.
Nevertheless, here the function on the boundary is a polynomial, and the solution will also be a polynomial. One can proceed by using some "similarity method" and guessing that it is a polynomial of the form

$$
u(x, y)=a+b x+c x^{2}+d y^{2}
$$

and then $\nabla^{2} u=0$ gives $c+d=0$, and the boundary conditions the other constants:

$$
u(x, y)=\frac{5}{2}+x-\frac{5}{2} x^{2}+\frac{5}{2} y^{2} .
$$

From which $u(0,0)=5 / 2$ as expected.

3. Wave Equation (15 Points)

Find the solution of following wave equation with homogeneous Neumann conditions (= the derivative u_{x} on the boundary is zero):

$$
u=u(x, t) \quad \text { s.t. } \quad \begin{cases}u_{t t}=c^{2} u_{x x}, & x \in[0, \pi], t \geqslant 0 \tag{2}\\ u_{x}(0, t)=u_{x}(\pi, t)=0, & t \geqslant 0 \\ u(x, 0)=1+\cos (4 x), & x \in[0, \pi] \\ u_{t}(x, 0)=3 . & x \in[0, \pi]\end{cases}
$$

Use the method of separation of variables, showing all the steps.

Solution:

The separation of variables Ansatz is $u(x, t)=F(x) G(t)$ and the wave equation becomes the system of coupled equations:

$$
\left\{\begin{array}{l}
F^{\prime \prime}=k F, \\
\ddot{G}=k c^{2} G,
\end{array} \quad \text { for some } k \in \mathbb{R} .\right.
$$

In order to have nontrivial solutions, the homogeneous Neumann conditions imply:

$$
\left\{\begin{array} { l l }
{ u _ { x } (0 , t) = F ^ { \prime } (0) G (t) = 0 , } & { t \geqslant 0 } \\
{ u _ { x } (\pi , t) = F ^ { \prime } (\pi) G (t) = 0 , } & { t \geqslant 0 }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
F^{\prime}(0)=0, \\
F^{\prime}(\pi)=0 .
\end{array}\right.\right.
$$

We have obtained a well-defined initial value problem for $F=F(x)$:

$$
\left\{\begin{array}{l}
F^{\prime \prime}=k F \\
F^{\prime}(0)=F^{\prime}(\pi)=0
\end{array}\right.
$$

The form of the general solution of the differential equation $\mathrm{F}^{\prime \prime}=\mathrm{kF}$ depends on the positivity of k.

$k \gtreqless 0$	general solution $F(x)$	derivative $F^{\prime}(x)$
$k>0$	$A e^{\sqrt{k} x}+B e^{-\sqrt{k} x}$	$\sqrt{k}\left(\mathrm{Ae}^{\sqrt{k} x}-\mathrm{Be}^{-\sqrt{k} x}\right)$
$k=0$	$A x+B$	B
$k<0$	$A \cos (\sqrt{-\mathrm{k}} x)+B \sin (\sqrt{-\mathrm{k}} x)$	$-A \sqrt{-\mathrm{k}} \sin (\sqrt{-\mathrm{k}} x)+B \sqrt{-\mathrm{k}} \cos (\sqrt{-\mathrm{k}} x)$

The derivatives at the boundary are

$k \gtreqless 0$	$F^{\prime}(0)$	$F^{\prime}(\pi)$
$k>0$	$\sqrt{k}(A-B)$	$\sqrt{k}\left(A e^{\sqrt{k}} \pi-\mathrm{Be}^{-\sqrt{k}} \pi\right)$
$k=0$	B	B
$k<0$	$B \sqrt{-k}$	$-A \sqrt{-\mathrm{k}} \sin (\sqrt{-\mathrm{k}} \pi)+B \sqrt{-\mathrm{k}} \cos (\sqrt{-\mathrm{k}} \pi)$

By imposing them equal to zero we finally get the following solutions:

$k \gtreqless 0$	nontrivial solutions?	general solution $F(x)$
$k>0$	no	$/$
$k=0$	yes	$F_{0}(x)=B$
$k<0$	yes, for $k=-n^{2}$	$F_{n}(x)=B_{n} \cos (n x)$

Now for these values of $k\left(k=0\right.$ and $\left.k=-n^{2}\right)$ we solve the problem for $G=G(t)$.

k	solution $G(t)$
$k=0$	$G_{0}(t)=C t+D$
$k=-n^{2}$	$G_{n}(t)=C_{n} \cos (c n t)+D_{n} \sin (c n t)$

By the superposition principle, any function of the form

$$
\mathfrak{u}(x, t)=F_{0}(x) G_{0}(t)+\sum_{n=1}^{+\infty} F_{n}(x) G_{n}(t)
$$

will be a solution. By renaming the constants differently this is:

$$
u(x, t)=A_{0} t+B_{0}+\sum_{n=1}^{+\infty}\left(A_{n} \cos (c n t)+B_{n} \sin (c n t)\right) \cos (n x) .
$$

The time derivative is

$$
\mathfrak{u}_{\mathrm{t}}(x, t)=A_{0}+\sum_{n=1}^{+\infty} \mathfrak{c n}\left(-A_{n} \sin (\mathrm{cnt})+B_{n} \cos (\mathrm{cnt})\right) \cos (n x) .
$$

Now we have to find these constants by imposing the initial conditions

$$
\left\{\begin{array}{l}
u(x, 0)=1+\cos (4 x) \\
u_{t}(x, 0)=3
\end{array}\right.
$$

In this case they translate into

$$
\left\{\begin{array}{l}
\mathrm{B}_{0}+\sum_{n=1}^{+\infty} A_{n} \cos (n x)=1+\cos (4 x) \\
A_{0}+\sum_{n=1}^{+\infty} \mathrm{cnB}_{n} \cos (n x)=3
\end{array}\right.
$$

which means that the only nonzero coefficients are

$$
\left\{\begin{array}{l}
B_{0}=1 \\
A_{4}=1 \\
A_{0}=3
\end{array}\right.
$$

Therefore the final solution is:

$$
u(x, t)=3 t+1+\cos (4 c t) \cos (4 x)
$$

4. Laplace Equation and Maximum Principle (6 Points)

Consider the solution of the following Laplace problem on a disk D_{R} centered in the origin, of radius $R>0$:

$$
u=u(x, y) \quad \text { s.t. } \quad \begin{cases}\nabla^{2} u=0, & \text { in } D_{R} \tag{3}\\ u=\frac{e^{R}}{2 R^{2}}\left(x^{2}-y^{2}\right) . & \text { on } \partial D_{R}\end{cases}
$$

Find the unique $R>0$ such that the maximum of u on the disk is π :

$$
\max _{(x, y) \in D_{R}} u(x, y)=\pi
$$

Solution:

We find the maximum of u. This will be a function of R, which we are going to impose equal to π.
By the maximum principle we have to find the maximum of the function on the boundary

$$
\max _{(x, y) \in D_{R}} u(x, y)=\max _{(x, y) \in \partial D_{R}} u(x, y)=\max _{\left\{x^{2}+y^{2}=R^{2}\right\}} \frac{e^{R}}{2 R^{2}}\left(x^{2}-y^{2}\right)
$$

In other words we have to find the maximum of $x^{2}-y^{2}$ in the region $\left\{x^{2}+y^{2}=R^{2}\right\}$. To do this we can parametrise the boundary with polar coordinates and find the maximum of $R^{2}\left(\cos ^{2}(\vartheta)-\sin ^{2}(\vartheta)\right)=R^{2} \cos (2 \vartheta)$ in the interval $\vartheta \in[0,2 \pi]$, which is clearly R^{2}.
An equally valid argument would be to observe that on the boundary

$$
x^{2}-y^{2}=2 x^{2}-R^{2} \quad \Longrightarrow \quad \max \left(x^{2}-y^{2}\right)=R^{2}
$$

Anyway, the maximum of u will be:

$$
\max _{(x, y) \in D_{R}} u(x, y)=\max _{\left\{x^{2}+y^{2}=R^{2}\right\}} \frac{e^{R}}{2 R^{2}}\left(x^{2}-y^{2}\right)=\frac{e^{R}}{2 R^{2}} \cdot R^{\mathscr{L}}=\frac{e^{R}}{2}
$$

This is equal to π if and only if

$$
\frac{\mathrm{e}^{\mathrm{R}}}{2}=\pi \quad \Leftrightarrow \quad \mathrm{e}^{\mathrm{R}}=2 \pi \quad \Leftrightarrow \quad \mathrm{R}=\ln (2 \pi) .
$$

5. Heat Equation via Fourier Transform (8 Points)

Remember that the solution of the heat equation

$$
\begin{cases}u_{t}=c^{2} u_{x x}, & x \in \mathbb{R}, t \geqslant 0 \\ u(x, 0)=f(x), & x \in \mathbb{R}\end{cases}
$$

has Fourier transform

$$
\widehat{\mathfrak{u}}(\omega, \mathrm{t})=\widehat{\mathrm{f}}(\omega) \mathrm{e}^{-\mathrm{c}^{2} \omega^{2} \mathrm{t}}
$$

For some particular cases of f, this \widehat{u} can be recognised as the Fourier transform of some function, and the original solution $u=u(x, t)$ can be found.

Find the solution $u=u(x, t)$ of the following:

$$
\begin{cases}u_{t}=c^{2} u_{x x}, & t \geqslant 0, x \in \mathbb{R} \tag{4}\\ u(x, 0)=e^{-\frac{1}{2} x^{2}} . & x \in \mathbb{R}\end{cases}
$$

[Hint: The Fourier transform of this gaussian function $f(x)=e^{-\frac{1}{2} x^{2}}$ is recalled at the beginning of the exam.]

Solution:

The Fourier transform we need is recalled at the beginning of the exam

$$
\begin{equation*}
\widehat{\mathrm{e}^{-\mathrm{a} x^{2}}}=\frac{1}{\sqrt{2 \mathrm{a}}} \mathrm{e}^{-\frac{\omega^{2}}{4 \mathrm{a}}} \tag{5}
\end{equation*}
$$

Here $a=1 / 2$ and therefore

$$
\widehat{\mathrm{e}^{-\frac{1}{2} x^{2}}}=\mathrm{e}^{-\frac{\omega^{2}}{2}}
$$

So the solution has Fourier transform

$$
\widehat{\mathfrak{u}}(\omega, \mathrm{t})=\mathrm{e}^{-\frac{\omega^{2}}{2}} \mathrm{e}^{-\mathrm{c}^{2} \omega^{2} \mathrm{t}}
$$

We want to recognise it as a Fourier transform of some function. We notice it is still a gaussian

$$
\widehat{\mathfrak{u}}(\omega, \mathrm{t})=\mathrm{e}^{-\left(\frac{1}{2}+\mathrm{c}^{2} \mathrm{t}\right) \omega^{2}},
$$

and, because of (5), we would like to have for some $a>0$,

$$
\frac{1}{2}+\mathrm{c}^{2} \mathrm{t}=\frac{1}{4 \mathrm{a}}
$$

which gives us

$$
\begin{equation*}
\mathrm{a}=\frac{1}{2+4 \mathrm{c}^{2} \mathrm{t}} . \tag{6}
\end{equation*}
$$

We would like to say that $\widehat{u}(\omega, \mathrm{t})$ is the Fourier transform of the gaussian with this a, but we would miss the factor $1 / \sqrt{2 a}$ appearing in (5).
But then we just need to multiply and divide by it to ge ${ }^{2}$

$$
\begin{aligned}
& \mathfrak{u}(\mathrm{x}, \mathrm{t})=\mathcal{F}^{-1}(\widehat{\mathfrak{u}}(\omega, \mathrm{t}))=\mathcal{F}^{-1}\left(\mathrm{e}^{-\left(\frac{1}{2}+\mathrm{c}^{2} \mathrm{t}\right) \omega^{2}}\right)=\sqrt{2 \mathrm{a}} \mathcal{F}^{-1}\left(\frac{1}{\sqrt{2 \mathrm{a}}} \mathrm{e}^{-\frac{\omega^{2}}{4 \mathrm{a}}}\right) \text { 䔍 } \\
& \text { [5] } \sqrt{2 a} \mathrm{e}^{-\mathrm{ax}}{ }^{2} \stackrel{6}{\sqrt{6}} \sqrt{\frac{1}{1+2 \mathrm{c}^{2} \mathrm{t}}} \mathrm{e}^{-\frac{x^{2}}{2+4 c^{2} \mathrm{t}}}=\sqrt{\frac{\mathrm{e}^{-\frac{x^{2}}{2+4 c^{2} t}}}{\sqrt{1+2 \mathrm{c}^{2} \mathrm{t}}}} \text {. }
\end{aligned}
$$

An alternative way of proceeding, starting from

$$
\widehat{\mathfrak{u}}(\omega, \mathrm{t})=\mathrm{e}^{-\left(\frac{1}{2}+\mathrm{c}^{2} \mathrm{t}\right) \omega^{2}},
$$

would be to use directly Fourier inversion's formula:

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \widehat{u}(\omega, t) e^{i \omega x} d \omega=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-\left(\frac{1}{2}+c^{2} t\right) \omega^{2}} e^{i \omega x} d \omega= \\
& =\mathcal{F}\left(e^{-\left(\frac{1}{2}+c^{2} t\right) \omega^{2}}\right)(-x) \frac{1}{=} \frac{1}{\sqrt{2\left(\frac{1}{2}+c^{2} t\right)}} e^{-\frac{(-x)^{2}}{4\left(\frac{1}{2}+c^{2} t\right)}}=\frac{e^{-\frac{x^{2}}{2+4 c^{2} t}}}{\sqrt{1+2 c^{2} t}}
\end{aligned}
$$

[^1]
[^0]: ${ }^{1}$ We use the indefinite integral $\int \sin ^{2}(\vartheta) d \vartheta=\frac{1}{2}(\vartheta-\sin (\vartheta) \cos (\vartheta))+\mathrm{c}$, which was given at the beginning of the exam.

[^1]: ${ }^{2}$ In what follows \mathcal{F} denotes the Fourier transform.

