MC 7: Reihenentwicklung

Einsendeschluss: Freitag, der 5. April 2019, um 19:00 Uhr.

Aufgabe 1. Gegeben sei die Potenzreihe

$$\sum_{n=0}^{\infty} c_n z^n,$$

mit $c_{3n}=n, c_{3n+1}=n^2$ und $c_{3n+2}=n^3, n\geq 0$. Dann ist der Konvergenzradius dieser Potenzreihe

- (a) R = 0.
- (b) R = 1.
- (c) $R = \infty$.
- (d) nicht bestimmbar.

 ${\bf Aufgabe}$ 2. Sei f eine holomorphe Funktion mit Taylorreihe

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

welche Konvergenzradius R>0 hat. Dann hat die Funktion $g(z):=f(z^2)$ die Taylorreihe

- (a) $\sum_{n=0}^{\infty} c_{2n} z^n.$
- (b) $\sum_{n=0}^{\infty} c_{2n} z^{2n}$.
- (c) $\sum_{n=0}^{\infty} c_n z^{2n}.$
- (d) g ist gar nicht holomorph um den Ursprung.
- (e) Die richtige Taylorreihe ist in den Antworten (a)-(c) nicht gegeben.

Aufgabe 3. Definiert

$$f(z) = 1 + z + z^2 + z^4 + z^8 + z^{16} + \dots$$

eine holomorphe Funktion auf $\{z \in \mathbb{C} \mid |z| < 1\}$?

- (a) Ja.
- (b) Nein.

Aufgabe 4. Definiert

$$f(z) = \sum_{n=1}^{\infty} 2^n z^n$$

eine holomorphe Funktion auf $\{z \in \mathbb{C} \mid |z| < 1\}$?

- (a) Ja.
- (b) Nein.

Aufgabe 5. Definiert

$$f(z) = \sum_{n=1}^{\infty} n^n z^n$$

eine holomorphe Funktion auf $\{z \in \mathbb{C} \mid |z| < 1\}$?

- (a) Ja.
- (b) Nein.

Aufgabe 6. Definiert

$$f(z) = \sum_{n=1}^{\infty} 2^{-n} z^n$$

eine holomorphe Funktion auf $\{z \in \mathbb{C} \mid |z| < 1\}$?

- (a) Ja.
- (b) Nein.

Aufgabe 7. Definiert

$$f(z) = \sum_{n=1}^{\infty} \sqrt{n} z^n$$

eine holomorphe Funktion auf $\{z \in \mathbb{C} \mid |z| < 1\}$?

- (a) Ja.
- (b) Nein.

Aufgabe 8. Welchen Konvergenzradius hat die Reihe

$$-z + 4z^2 - 9z^3 + 16z^4 + \dots$$
?

- $(a) \quad 0.$
- (b) 1.
- (c) 2.
- (d) ∞ .

Aufgabe 9. Es sei f ein Polynom vom Grad $m \in \mathbb{N}$. Dann folgt für die Funktion g(z) = f(1/z):

- (a) g ist eine ganze Funktion (also auf ganz $\mathbb C$ holomorph).
- (b) g hat eine Polstelle erster Ordnung in z = 0.
- (c) g hat eine Polstelle m-ter Ordnung in z = 0.
- (d) g hat eine wesentliche Singularität in z = 0.
- (e) $g(z) = z^{-m}$.

Aufgabe 10. Die Potenzreihe

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

habe den Konvergenzradius R. Dann folgt für die Potenzreihe

$$g(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^{-n}$$
:

- (a) g(z) = 1/f(z).
- (b) g(z) = f(1/z).
- (c) g hat eine wesentliche Singularität in z_0 .
- (d) Die Reihe g hat den Konvergenzradius 1/R.
- (e) Die Reihe g konvergiert für alle $z \in \mathbb{C}$, sodass $|z z_0| > 1/R$.

Aufgabe 11. Sei $\Omega \subset \mathbb{C}$ ein Gebiet, $z_0 \in \Omega$ und $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ eine holomorphe Funktion mit wesentlicher Singularität an z_0 . Dann folgt:

- (a) Es existiert $n \in \mathbb{Z}$, sodass $g_n(z) = (z z_0)^n f(z)$ eine hebbare Singularität in x_0 besitzt.
- (b) Es gibt $n \in \mathbb{Z}$, sodass $g_n(z) = (z z_0)^n f(z)$ eine Polstelle in z_0 besitzt.
- (c) Für jedes $n \in \mathbb{Z}$ hat auch die Funktion $g_n(z) = (z z_0)^n f(z)$ eine wesentliche Singularität an z_0 .
- (d) Keine der obigen Antworten.

Aufgabe 12. Gegeben sei eine Potenzreihe

$$\sum_{n=0}^{\infty} c_n z^n$$

mit Konvergenzradius R > 0. Welchen Konvergenzradius hat dann die Reihe

$$\sum_{n=0}^{\infty} c_n z^{2n}?$$

- (a) 2R
- (b) R/2
- (c) \sqrt{R}
- (d) R^2