HS2020

Percolation Theory - Exercise Sheet 1

Exercise $1.1.(\star)$

- (a) Prove that $\{A \longleftrightarrow B\}$ is measurable for $A, B \subseteq \mathbb{Z}^d$.
- (b) Prove that

$$F: \{0,1\}^E \longrightarrow \mathbb{N} \cup \{+\infty\}$$
$$\omega \longmapsto |C_x(\omega)|$$

is measurable.

Exercise 1.2.^(*) An *infinite open path* from 0 (in ω) is a sequence $(\gamma_i)_{i \in \mathbb{N}}$ of distinct vertices such that $\gamma_0 = 0$ and for all $i \ge 1$, $\gamma_{i-1} \sim \gamma_i$ and $\omega(\gamma_{i-1}\gamma_i) = 1$. Prove that the event

 $A = \{ \exists \text{ an infinite open path from } 0 \}$

is measurable.

Exercise $1.3.(\star)$

- (a) Derive explicit expressions for $P_p[|C_0| = 0]$, $P_p[|C_0| \ge 1]$, and $P_p[|C_0| = 1]$. Are these probabilities monotone in $p \in [0, 1]$?
- (b) Calculate $P_p[|C_0| \ge 1 | |C_x| = 0]$ for any $x \in \mathbb{Z}^d$.

Exercise 1.4. On \mathbb{Z}^2 , consider the event

 $C_{2n,n} = \{ \exists \text{ an open path from left to right in } [0,2n] \times [0,n] \},\$

where we write $[0, 2n] \times [0, n]$ for the subgraph with vertex set $[0, 2n] \times [0, n] \cap \mathbb{Z}^2$ and edge set $([0, 2n] \times [0, n] \cap E) \setminus ([0, 2n] \times \{n\} \cap E)$. For $q_n = 1 - P_p[C_{2n,n}]$, prove that one of the following holds:

- (i) $\exists c > 0$ such that $\forall n, q_n \ge c$,
- (ii) $\exists c > 0$ such that $\forall n, q_n \leq e^{-cn}$.

Based on this result, prove that $p_c < 1$.