Percolation Theory - Exercise Sheet 1

Exercise 1.1. ${ }{ }^{(*)}$

(a) Prove that $\{A \longleftrightarrow B\}$ is measurable for $A, B \subseteq \mathbb{Z}^{d}$.
(b) Prove that

$$
\begin{aligned}
F:\{0,1\}^{E} & \longrightarrow \mathbb{N} \cup\{+\infty\} \\
\omega & \longmapsto\left|C_{x}(\omega)\right|
\end{aligned}
$$

is measurable.

Exercise 1.2. ${ }^{(*)}$ An infinite open path from 0 (in ω) is a sequence $\left(\gamma_{i}\right)_{i \in \mathbb{N}}$ of distinct vertices such that $\gamma_{0}=0$ and for all $i \geq 1, \gamma_{i-1} \sim \gamma_{i}$ and $\omega\left(\gamma_{i-1} \gamma_{i}\right)=1$. Prove that the event

$$
A=\{\exists \text { an infinite open path from } 0\}
$$

is measurable.

Exercise 1.3. ${ }^{(*)}$

(a) Derive explicit expressions for $\mathrm{P}_{p}\left[\left|C_{0}\right|=0\right], \mathrm{P}_{p}\left[\left|C_{0}\right| \geq 1\right]$, and $\mathrm{P}_{p}\left[\left|C_{0}\right|=1\right]$. Are these probabilities monotone in $p \in[0,1]$?
(b) Calculate $\mathrm{P}_{p}\left[\left|C_{0}\right| \geq 1| | C_{x} \mid=0\right]$ for any $x \in \mathbb{Z}^{d}$.

Exercise 1.4. On \mathbb{Z}^{2}, consider the event

$$
C_{2 n, n}=\{\exists \text { an open path from left to right in }[0,2 n] \times[0, n]\},
$$

where we write $[0,2 n] \times[0, n]$ for the subgraph with vertex set $[0,2 n] \times[0, n] \cap \mathbb{Z}^{2}$ and edge set $([0,2 n] \times[0, n] \cap E) \backslash([0,2 n] \times\{n\} \cap E)$. For $q_{n}=1-\mathrm{P}_{p}\left[C_{2 n, n}\right]$, prove that one of the following holds:
(i) $\exists c>0$ such that $\forall n, q_{n} \geq c$,
(ii) $\exists c>0$ such that $\forall n, q_{n} \leq e^{-c n}$.

Based on this result, prove that $p_{c}<1$.

