Percolation Theory - Exercise Sheet 3

Exercise 3.1.^(*) Let G = (V, E) be a graph. Consider two edges $e, f \in E$, and prove that

 $P_p[\{e \text{ open}\} \circ \{f \text{ open}\}] \le P_p[e \text{ open}] \cdot P_p[f \text{ open}] \le P_p[\{e \text{ open}\} \cap \{f \text{ open}\}].$

Remark: Prove it directly, i.e. do not apply BK-Reimer inequality or FKG inequality.

Exercise 3.2.^(*) Let G = (V, E) be a finite graph, and let $A \subseteq \{0, 1\}^E$ be an increasing event, $B \subseteq \{0, 1\}^E$ a decreasing event.

- (a) Let $\omega \in A$. Prove that there exists a witness I for A in ω such that for all $e \in I$, $\omega(e) = 1$.
- (b) Prove that $A \circ B = A \cap B$. Deduce that $P_p[A \circ B] \leq P_p[A] \cdot P_p[B]$ in this case.

Exercise 3.3.^(*) Use the BK-Reimer inequality to prove that for $x, y, z \in \mathbb{Z}^d$,

$$\mathbf{P}_p[\{x\longleftrightarrow y\}\circ\{y\longleftrightarrow z\}]\leq \mathbf{P}_p[\{x\longleftrightarrow y\}]\cdot \mathbf{P}_p[\{y\longleftrightarrow z\}]$$

Warning: The event $\{x \leftrightarrow y\}$ depends on infinitely many edges, so one cannot directly apply the BK-Reimer inequality.

Exercise 3.4. Define the random variable

$$X_n = \frac{1}{|\Lambda_n|} \sum_{x \in \Lambda_n} \mathbb{1}_{x \longleftrightarrow \infty}.$$

Prove that

$$\lim_{n \to \infty} X_n = \theta(p).$$
 (in probability)

Hint: Look at the expectation and the variance of X_n .