Percolation Theory - Exercise Sheet 4

Exercise 4.1.^(\star) Let $p < p_c$. Define

$$\partial^{-}\Lambda_n = \{x \in \Lambda_n : x_1 = -n\}, \ \partial^{+}\Lambda_n = \{x \in \Lambda_n : x_1 = n\},\$$

which are two opposite sides of the boundary of $\Lambda_n = \{-n, \ldots, n\}^d$. Prove that

where the drawing represents an open path in Λ_n from $\partial^-\Lambda_n$ to $\partial^+\Lambda_n$.

Exercise $4.2.(\star)$

- (a) Let $p < p_c$. Prove that $\mathbb{E}_p[|C_0|] < \infty$.
- (b) Prove that $\mathbb{E}_{p_c}[|C_0|] = +\infty$.
- (c) Show that $p_c(d) \ge \frac{1}{2d}$.

Hint for (b) and (c): First argue that $\forall S \subset \mathbb{Z}^d$ finite with $0 \in S$, $\phi_{p_c}(S) \ge 1$.

Exercise 4.3. [Fekete's lemma]

Let $(u_n)_{n\geq 1}$ be a sequence of numbers in $[-\infty,\infty)$ satisfying

$$u_{m+n} \le u_m + u_n \tag{subadditivity}$$

for all $m, n \ge 1$. Prove that the limit of $\left(\frac{u_n}{n}\right)$ exists in $[-\infty, \infty)$ and that

$$\lim_{n \to \infty} \frac{u_n}{n} = \inf_{n \ge 1} \frac{u_n}{n}.$$

Exercise 4.4. [Percolation with long-range interactions]

Let $G = (\mathbb{Z}^d, E)$ be the (complete) graph with vertex set \mathbb{Z}^d and edge set

$$E := \left\{ \{x, y\} : x, y \in \mathbb{Z}^d \right\}$$

and let $(J_{x,y})_{x,y\in\mathbb{Z}^d}$ be a family of non-negative, translation-invariant numbers, i.e. $J_{x,y} \ge 0$ and $J_{x,y} = J_{x+z,y+z}$ for all $x, y, z \in \mathbb{Z}^d$. We consider the bond percolation measure $P_{\beta}, \beta \ge 0$, that is defined as the product measure on $\{0,1\}^E$ (equipped with the product- σ -algebra) such that

$$P_{\beta}[\{x, y\} \text{ is open}] = 1 - e^{-\beta J_{x,y}}, P_{\beta}[\{x, y\} \text{ is closed}] = e^{-\beta J_{x,y}}$$

for $x, y \in \mathbb{Z}^d$.

(a) Assume that $\sum_{x \in \mathbb{Z}^d} J_{0,x} = +\infty$. Prove that $P_{\beta}[0 \longleftrightarrow \infty] = 1$ for all $\beta > 0$, where $\{0 \longleftrightarrow \infty\}$ denotes the event that 0 is connected to Λ_n^{c} for all $n \ge 1$. *Hint:* Use the second lemma of Borel-Cantelli.

From now on, we assume that $\sum_{x \in \mathbb{Z}^d} J_{0,x} < \infty$.

- (b) Define the analogues β_c , $\tilde{\beta}_c$, $\phi_{\beta}(S)$ of p_c , \tilde{p}_c , $\phi_p(S)$ in this context.
- (c) Show that for all $\beta \geq \tilde{\beta}_c$,

$$\mathbf{P}_{\beta}[0\longleftrightarrow\infty]\geq \frac{\beta-\beta_c}{\beta}$$

Hint: Argue first that for $\beta > 0$ and a finite subset $A \subset \mathbb{Z}^d$,

$$\frac{d}{d\beta} \mathcal{P}_{\beta} \left[0 \longleftrightarrow A^{\mathsf{c}} \right] \ge \frac{1}{\beta} \inf_{S \subseteq A, 0 \in S} \phi_{\beta}(S) \cdot \left(1 - \mathcal{P}_{\beta} \left[0 \longleftrightarrow A^{\mathsf{c}} \right] \right). \tag{1}$$

Note that a finite volume version of (1) (i.e. with events restricted to the subgraph with vertex set Λ_n) can be obtained analogously to the proof of Lemma 2 in Section 2.2.

(d) Assume that the interactions are finite-range (i.e. $\exists R \text{ s.t. } J_{x,y} = 0 \text{ if } |x - y| \ge R$). Show that for all $\beta < \tilde{\beta}_c$, there exists c > 0 such that

$$\mathbf{P}_{\beta}[0\longleftrightarrow\Lambda_{n}^{\mathsf{c}}] \le e^{-cn}$$

(e) In the general case (i.e. no finite-range assumption), show that for all $\beta < \tilde{\beta}_c$,

$$\sum_{x\in \mathbb{Z}^d} \mathcal{P}_\beta[0\longleftrightarrow x] < \infty.$$

Deduce that $\tilde{\beta}_c = \beta_c$.

Hint: Consider S with $\phi_{\beta}(S) < 1$ and show that for all $n \ge 1$,

$$\sum_{x \in \Lambda_n} \mathcal{P}_{\beta}[0 \stackrel{\Lambda_n}{\longleftrightarrow} x] \le \frac{|S|}{1 - \phi_{\beta}(S)}.$$