Percolation Theory - Exercise Sheet 6

Recall $p_k = \frac{1}{(\lambda e)^{|\Lambda_k|}}$, $k \ge 1$, as defined in the context of k-independent site percolation.

Exercise 6.0. [Exponential decay in volume in the perturbative regime] Consider Bernoulli *bond* percolation with parameter $p \leq \frac{1}{2d}p_2$. Prove that for all $n \geq 1$,

$$\mathbf{P}_p[|C_0| \ge n] \le e^{-n}.$$

Remark: The exercise originates from the lecture notes and has later been added to this exercise sheet for completeness.

Exercise 6.1.^(*) [Alternative def. of correlation length via $P_p[\Lambda_n \leftrightarrow \partial \Lambda_{2n}]$] For $p \in [0, 1]$, define

$$\ell(p) := \min\{n \ge 1 : \mathcal{P}_p[\Lambda_n \leftrightarrow \partial \Lambda_{2n}]) \le p_3\}.$$

Prove that there exists a constant C = C(d) > 0 such that for all $p \in [0, 1]$,

$$\frac{\xi(p)}{2} \le \ell(p) \le 1 + C\xi(p)\log(2 + \xi(p)).$$

Hint: To obtain the first inequality, recall the proof of exponential decay in volume via renormalization. Towards the second inequality, show that $P_p[\Lambda_n \leftrightarrow \partial \Lambda_{2n}] \leq p_3$ for n sufficiently large compared to $\xi(p)$.

Exercise 6.2. [Volume correlation length]

(a) Let $p \in (0, 1)$. Show that for all $m, n \ge 1$,

$$\frac{1}{m+n} \mathbb{P}_p\big[|C_0| = m+n\big] \ge \frac{p}{(1-p)^2} \frac{1}{n} \mathbb{P}_p\big[|C_0| = n\big] \frac{1}{m} \mathbb{P}_p\big[|C_0| = m\big].$$

(b) Let $p \in [0, 1]$. Prove that the volume correlation length, defined by

$$\zeta(p) = \left(\lim_{n \to \infty} -\frac{1}{n} \log \left(\mathbb{P}_p \left[|C_0| = n \right] \right) \right)^{-1},$$

is well-defined, and finite for $p < p_c$. Also prove that

$$\mathbb{P}_p[|C_0| = n] \le \frac{(1-p)^2}{p} n e^{-\frac{n}{\zeta(p)}}.$$

(c) Let $p < p_c$. Show that

$$\mathbb{P}_p\big[|C_0| \ge n\big] = e^{-\frac{n}{\zeta(p)} + o(n)}.$$

(d) Prove that there exists a constant C' = C'(d) > 0 such that for all $p \in [0, 1]$,

$$\xi(p) \le \zeta(p) \le 1 + C'\xi(p)^d \log(2 + \xi(p))^d.$$

Hint: Towards the second inequality, first argue that that $\zeta(p) \leq (2\ell(p) + 1)^d$.

Exercise 6.3. [Exponential decay in volume]

The goal of this exercise is to give an alternative proof of exponential decay in volume.

(a) Let $X \ge 0$ be a random variable. Assume that $\mathbb{E}[e^{\varepsilon X}] =: C < \infty$ for some $\varepsilon > 0$. Show that for all $x \ge 0$,

$$\mathbb{P}[X \ge x] \le C \, e^{-\varepsilon x}$$

Let $p < p_c$. To prove that there exists c > 0 such that for all $n \ge 1$

$$\mathbb{P}_p\big[|C_0| \ge n\big] \le e^{-cn},$$

it therefore suffices to prove $\mathbb{E}[e^{\epsilon |C_0|}] < \infty$ for some $\epsilon > 0$.

(b) Using BK-Reimer inequality, show that

$$\mathbb{E}_p\big[|C_0|^2\big] \le \mathbb{E}_p\big[|C_0|\big]^3.$$

(c) More generally, show that

$$\mathbb{E}_p[|C_0|^n] \le 2^n \, n! \, \mathbb{E}_p[|C_0|]^{2n-1},$$

and conclude from there.