Percolation Theory - Exercise Sheet 6

Recall $p_{k}=\frac{1}{(\lambda e)^{\left|\Lambda_{k}\right|}}, k \geq 1$, as defined in the context of k-independent site percolation.
Exercise 6.0. [Exponential decay in volume in the perturbative regime]
Consider Bernoulli bond percolation with parameter $p \leq \frac{1}{2 d} p_{2}$. Prove that for all $n \geq 1$,

$$
\mathrm{P}_{p}\left[\left|C_{0}\right| \geq n\right] \leq e^{-n}
$$

Remark: The exercise originates from the lecture notes and has later been added to this exercise sheet for completeness.

Exercise 6.1. ${ }^{(*)} \quad$ [Alternative def. of correlation length via $\left.\mathrm{P}_{p}\left[\Lambda_{n} \leftrightarrow \partial \Lambda_{2 n}\right]\right]$ For $p \in[0,1]$, define

$$
\left.\ell(p):=\min \left\{n \geq 1: \mathrm{P}_{p}\left[\Lambda_{n} \leftrightarrow \partial \Lambda_{2 n}\right]\right) \leq p_{3}\right\}
$$

Prove that there exists a constant $C=C(d)>0$ such that for all $p \in[0,1]$,

$$
\frac{\xi(p)}{2} \leq \ell(p) \leq 1+C \xi(p) \log (2+\xi(p))
$$

Hint: To obtain the first inequality, recall the proof of exponential decay in volume via renormalization. Towards the second inequality, show that $\left.\mathrm{P}_{p}\left[\Lambda_{n} \leftrightarrow \partial \Lambda_{2 n}\right]\right) \leq p_{3}$ for n sufficiently large compared to $\xi(p)$.

Exercise 6.2. [Volume correlation length]

(a) Let $p \in(0,1)$. Show that for all $m, n \geq 1$,

$$
\frac{1}{m+n} \mathbb{P}_{p}\left[\left|C_{0}\right|=m+n\right] \geq \frac{p}{(1-p)^{2}} \frac{1}{n} \mathbb{P}_{p}\left[\left|C_{0}\right|=n\right] \frac{1}{m} \mathbb{P}_{p}\left[\left|C_{0}\right|=m\right]
$$

(b) Let $p \in[0,1]$. Prove that the volume correlation length, defined by

$$
\zeta(p)=\left(\lim _{n \rightarrow \infty}-\frac{1}{n} \log \left(\mathbb{P}_{p}\left[\left|C_{0}\right|=n\right]\right)\right)^{-1}
$$

is well-defined, and finite for $p<p_{c}$. Also prove that

$$
\mathbb{P}_{p}\left[\left|C_{0}\right|=n\right] \leq \frac{(1-p)^{2}}{p} n e^{-\frac{n}{\zeta(p)}}
$$

(c) Let $p<p_{c}$. Show that

$$
\mathbb{P}_{p}\left[\left|C_{0}\right| \geq n\right]=e^{-\frac{n}{\zeta(p)}+o(n)}
$$

(d) Prove that there exists a constant $C^{\prime}=C^{\prime}(d)>0$ such that for all $p \in[0,1]$,

$$
\xi(p) \leq \zeta(p) \leq 1+C^{\prime} \xi(p)^{d} \log (2+\xi(p))^{d}
$$

Hint: Towards the second inequality, first argue that that $\zeta(p) \leq(2 \ell(p)+1)^{d}$.

Exercise 6.3. [Exponential decay in volume]
The goal of this exercise is to give an alternative proof of exponential decay in volume.
(a) Let $X \geq 0$ be a random variable. Assume that $\mathbb{E}\left[e^{\varepsilon X}\right]=: C<\infty$ for some $\varepsilon>0$. Show that for all $x \geq 0$,

$$
\mathbb{P}[X \geq x] \leq C e^{-\varepsilon x}
$$

Let $p<p_{c}$. To prove that there exists $c>0$ such that for all $n \geq 1$

$$
\mathbb{P}_{p}\left[\left|C_{0}\right| \geq n\right] \leq e^{-c n}
$$

it therefore suffices to prove $\mathbb{E}\left[e^{\epsilon\left|C_{0}\right|}\right]<\infty$ for some $\epsilon>0$.
(b) Using BK-Reimer inequality, show that

$$
\mathbb{E}_{p}\left[\left|C_{0}\right|^{2}\right] \leq \mathbb{E}_{p}\left[\left|C_{0}\right|\right]^{3}
$$

(c) More generally, show that

$$
\mathbb{E}_{p}\left[\left|C_{0}\right|^{n}\right] \leq 2^{n} n!\mathbb{E}_{p}\left[\left|C_{0}\right|\right]^{2 n-1}
$$

and conclude from there.

