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Exercise 7.1.(?) Let N(ω) be the number of infinite clusters in the percolation
configuration ω ∈ {0, 1}E . Prove that

N =

{
0 a.s. if θ(p) = 0,

1 a.s. if θ(p) > 0,

where we recall that θ(p) = Pp[0←→∞].

Exercise 7.2.(?)

(a) Let x, y ∈ Zd. Prove that p 7→ Pp[x←→ y] is continuous on [0, 1].

Hint: Using the uniqueness zone, show that the sequence (fn)n≥1 defined by

fn(p) := Pp[x
Λn←→ y] converges uniformly on [0, 1].

(b) Prove that p 7→ θ(p) is continuous on (pc, 1].

Exercise 7.3. Let p ∈ [0, 1] such that θ(p) > 0. Define

∂−Λn = {x ∈ Λn : x1 = −n}, ∂+Λn = {x ∈ Λn : x1 = n},

which are two opposite sides of the boundary of Λn = {−n, . . . , n}d.
Prove that

lim
n→∞

Pp

[
Λn

∂+Λn∂−Λn

]
= 1,

where the drawing represents an open path in Λn from ∂−Λn to ∂+Λn.
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In Chapter 3, uniqueness of the infinite cluster has been proven for Bernoulli
percolation on Zd, d ≥ 2. More precisely, for p ∈ [0, 1], it holds that either

Pp[N = 0] = 1 or Pp[N = 1] = 1.

The goal of the following two exercises is to study the number of infinite clusters on
more general graphs. To this end, note that Bernoulli percolation naturally extends
from Zd to general graphs.

Exercise 7.4. [Infinite clusters on general graphs] Let G = (V,E) be a
connected, locally finite (i.e. every vertex has finite degree) graph.

(a) For any p ∈ [0, 1], prove that Pp[N = 0] ∈ {0, 1} and Pp[N =∞] ∈ {0, 1}.
Deduce that Pp[1 ≤ N <∞] ∈ {0, 1}.

(b) Give an example of a graph such that for some p ∈ [0, 1] and some
1 ≤ k < ` <∞,

Pp[N = k] > 0 and Pp[N = `] > 0.

(c) Let p ∈ (0, 1) and fix an integer k ≥ 1. Prove that there exists a constant c > 0
such that

Pp[N = 1] ≥ c · Pp[N = k].

(d) Give an example of a graph such that for some p ∈ [0, 1] and for all 1 ≤ k <∞,

Pp[N = k] > 0.

2



An important tool in our study of the number of infinite clusters in Bernoulli
percolation on Zd was translation invariance of the measure Pp, which was used to
prove ergodicity. In the next exercise, we extend these ideas to transitive graphs.
A graph automorphism is a bijection ϕ : V → V satisfying

u ∼ v ⇐⇒ ϕ(u) ∼ ϕ(v)

for any u, v ∈ V . A graph G = (V,E) is called transitive if

∀u, v ∈ V, ∃ graph automorphism ϕ such that ϕ(u) = v.

The group of automorphisms Aut(G) acts

- on V by ϕ · v = ϕ(v),

- on E by ϕ · {u, v} = {ϕ(u), ϕ(v)},

- on {0, 1}E by (ϕ · ω)(e) = ω(ϕ−1 · e), and

- on the product-σ-algebra F by ϕ ·A = {ϕ · ω : ω ∈ A}.

Note that an edge e is open in ω if and only if the edge ϕ · e is open in ϕ · ω. An event
A ∈ F is called invariant if for all ϕ ∈ Aut(G),

ϕ ·A = A.

Exercise 7.5. [Infinite clusters on transitive graphs] Let G = (V,E) be a
transitive, connected, locally finite graph.

(a) Prove Pp[A] ∈ {0, 1} for any invariant event A. Deduce that Pp[N = k] ∈ {0, 1}
for all k ∈ N ∪ {∞}.
Hint: Verify that the proofs in Section 2.5 (invariance, mixing property, and
ergodicity) also apply in the more general setting of transitive graphs.

(b) Using part (b) of Exercise 7.4., prove that there exists k ∈ {0, 1,∞} such that
Pp[N = k] = 1.

(c) Give examples of graphs satisfying

(i) Pp[N =∞] = 1 for some p ∈ [0, 1],

(ii) Pp[N =∞] = 0 for all p ∈ [0, 1],

(iii) Pp[N =∞] = 1, Pq[N = 1] = 1 for some 0 < p, q < 1.
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