HS2020

Percolation Theory - Exercise Sheet 7

Exercise 7.1.^(*) Let $N(\omega)$ be the number of infinite clusters in the percolation configuration $\omega \in \{0, 1\}^E$. Prove that

$$N = \begin{cases} 0 \text{ a.s.} & \text{if } \theta(p) = 0, \\ 1 \text{ a.s.} & \text{if } \theta(p) > 0, \end{cases}$$

where we recall that $\theta(p) = \mathcal{P}_p[0 \longleftrightarrow \infty]$.

Exercise 7.2.^(\star)

- (a) Let $x, y \in \mathbb{Z}^d$. Prove that $p \mapsto \mathcal{P}_p[x \longleftrightarrow y]$ is continuous on [0, 1]. *Hint:* Using the uniqueness zone, show that the sequence $(f_n)_{n\geq 1}$ defined by $f_n(p) := \mathcal{P}_p[x \xleftarrow{\Lambda_n} y]$ converges uniformly on [0, 1].
- (b) Prove that $p \mapsto \theta(p)$ is continuous on $(p_c, 1]$.

Exercise 7.3. Let $p \in [0,1]$ such that $\theta(p) > 0$. Define

$$\partial^{-}\Lambda_n = \{x \in \Lambda_n : x_1 = -n\}, \ \partial^{+}\Lambda_n = \{x \in \Lambda_n : x_1 = n\}$$

which are two opposite sides of the boundary of $\Lambda_n = \{-n, \ldots, n\}^d$. Prove that

$$\lim_{n \to \infty} \mathbf{P}_p \left[\partial^- \Lambda_n \right] = 1,$$

where the drawing represents an open path in Λ_n from $\partial^-\Lambda_n$ to $\partial^+\Lambda_n$.

In Chapter 3, uniqueness of the infinite cluster has been proven for Bernoulli percolation on \mathbb{Z}^d , $d \geq 2$. More precisely, for $p \in [0, 1]$, it holds that either

$$P_p[N=0] = 1$$
 or $P_p[N=1] = 1$.

The goal of the following two exercises is to study the number of infinite clusters on more general graphs. To this end, note that Bernoulli percolation naturally extends from \mathbb{Z}^d to general graphs.

Exercise 7.4. [Infinite clusters on general graphs] Let G = (V, E) be a connected, locally finite (i.e. every vertex has finite degree) graph.

- (a) For any $p \in [0, 1]$, prove that $P_p[N = 0] \in \{0, 1\}$ and $P_p[N = \infty] \in \{0, 1\}$. Deduce that $P_p[1 \le N < \infty] \in \{0, 1\}$.
- (b) Give an example of a graph such that for some $p \in [0, 1]$ and some $1 \le k < \ell < \infty$,

$$P_p[N = k] > 0$$
 and $P_p[N = \ell] > 0.$

(c) Let $p \in (0,1)$ and fix an integer $k \ge 1$. Prove that there exists a constant c > 0 such that

$$\mathbf{P}_p[N=1] \ge c \cdot \mathbf{P}_p[N=k].$$

(d) Give an example of a graph such that for some $p \in [0, 1]$ and for all $1 \le k < \infty$,

$$\mathbf{P}_p[N=k] > 0.$$

An important tool in our study of the number of infinite clusters in Bernoulli percolation on \mathbb{Z}^d was translation invariance of the measure \mathbb{P}_p , which was used to prove ergodicity. In the next exercise, we extend these ideas to transitive graphs. A graph automorphism is a bijection $\varphi: V \to V$ satisfying

$$u \sim v \iff \varphi(u) \sim \varphi(v)$$

for any $u, v \in V$. A graph G = (V, E) is called *transitive* if

$$\forall u, v \in V, \exists$$
 graph automorphism φ such that $\varphi(u) = v$.

The group of automorphisms Aut(G) acts

- on V by $\varphi \cdot v = \varphi(v)$,
- on E by $\varphi \cdot \{u, v\} = \{\varphi(u), \varphi(v)\},\$
- on $\{0,1\}^E$ by $(\varphi \cdot \omega)(e) = \omega(\varphi^{-1} \cdot e)$, and
- on the product- σ -algebra \mathcal{F} by $\varphi \cdot A = \{\varphi \cdot \omega : \omega \in A\}.$

Note that an edge e is open in ω if and only if the edge $\varphi \cdot e$ is open in $\varphi \cdot \omega$. An event $A \in \mathcal{F}$ is called *invariant* if for all $\varphi \in \operatorname{Aut}(G)$,

$$\varphi \cdot A = A.$$

Exercise 7.5. [Infinite clusters on transitive graphs] Let G = (V, E) be a transitive, connected, locally finite graph.

(a) Prove $P_p[A] \in \{0, 1\}$ for any invariant event A. Deduce that $P_p[N = k] \in \{0, 1\}$ for all $k \in \mathbb{N} \cup \{\infty\}$.

Hint: Verify that the proofs in Section 2.5 (invariance, mixing property, and ergodicity) also apply in the more general setting of transitive graphs.

- (b) Using part (b) of Exercise 7.4., prove that there exists $k \in \{0, 1, \infty\}$ such that $P_p[N = k] = 1$.
- (c) Give examples of graphs satisfying
 - (i) $P_p[N = \infty] = 1$ for some $p \in [0, 1]$,
 - (ii) $P_p[N = \infty] = 0$ for all $p \in [0, 1]$,
 - (iii) $P_p[N = \infty] = 1$, $P_q[N = 1] = 1$ for some 0 < p, q < 1.