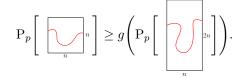
HS2020

Percolation Theory - Exercise Sheet 8

Exercise 8.1.^(\star) Consider percolation on (\mathbb{Z}^2, E).

(a) Show that there exists a continuous, strictly increasing $g:[0,1] \to [0,1]$ with g(0) = 0 and g(1) = 1 such that for every $p \in [0,1]$ and for all $n \ge 1$,



(b) Let $\lambda > 0$. Prove that there exists a continuous, strictly increasing $h_{\lambda} : [0,1] \to [0,1]$ with $h_{\lambda}(0) = 0$ and $h_{\lambda}(1) = 1$ such that for every $p \in [0,1]$ and for all $n \ge 1/\lambda$,

$$h_{\lambda}^{-1}\left(\mathbf{P}_{p}\left[\bigcup_{n} \right] \right) \geq \mathbf{P}_{p}\left[\bigcup_{[\lambda n]} \right] \geq h_{\lambda}\left(\mathbf{P}_{p}\left[\bigcup_{n} \right] \right)$$

Exercise 8.2.^(*) [Zhang's argument] Consider percolation on (\mathbb{Z}^2, E) .

(a) Show that for any $n \ge 1$,

where the drawing represents an infinite open path from the left side of Λ_n that remains outside of Λ_n .

(b) Show that for any $n \ge 1$,

$$\mathbf{P}_{1/2} \left[\underbrace{\sim}_{\infty} \underbrace{\wedge}_{n} \underbrace{\sim}_{\infty} \right] \geq 1 - 4 \, \mathbf{P}_{1/2} \left[\Lambda_n \nleftrightarrow \infty \right]^{1/4},$$

where the drawing represents two infinite primal open paths from the left respectively right side of Λ_n (in red) and two infinite dual open paths from the top respectively bottom side of Λ_n (in green). All paths remain outside of Λ_n and to be precise, the dual open paths actually start at dual vertices that are at distance 1/2 from the top respectively bottom side. (c) Using the uniqueness of the infinite cluster, show that $P_{1/2}[\Lambda_n \nleftrightarrow \infty] \ge (1/4)^4$ for any $n \ge 1$. Deduce that $\theta(1/2) = 0$.

Exercise 8.3. Let $G = (\mathbb{Z}^d, E), d \ge 2$ and let $k \ge 1$. Consider a random variable $X = X(e)_{e \in E} \in \{0, 1\}^E$ and assume that X is a *k*-independent (bond) percolation, i.e.

$$\forall A, B \subset E, \quad d(A, B) \ge k \implies (X(e))_{e \in A} \text{ and } (X(e))_{e \in B} \text{ are independent.}$$

Prove that for some sufficiently small $\delta = \delta(k) > 0$,

$$\left(\mathbb{P}[X(e) = 1] \ge 1 - \delta, \forall e \in E \right) \implies \mathbb{P}[X \in (0 \longleftrightarrow \infty)] > 0.$$

Hint: Prove it first for \mathbb{Z}^2 .

Exercise 8.4. Denote by H the subgraph of (\mathbb{Z}^2, E) induced by the set of vertices

$$\{(x,y) \in \mathbb{Z}^2 : 0 \le y \le \log(1+x)^2\},\$$

and define the critical value of the subgraph H as

$$p_c(H) = \sup\{p \in [0,1] : \mathsf{P}_p[0 \longleftrightarrow \infty] = 0\}.$$

Prove that $p_c(H) = p_c(\mathbb{Z}^2) = 1/2$.