Percolation Theory - Exercise Sheet 9

Throughout this exercise sheet, we consider percolation on $\left(\mathbb{Z}^{2}, E\right)$.

Exercise 9.1. ${ }^{(\star)} \quad$ [Quasi-multiplicativity of the 1-arm event]

Let $p=1 / 2$. Define

$$
\pi(m, n):=\mathrm{P}_{\frac{1}{2}}\left[\Lambda_{m} \longleftrightarrow \partial \Lambda_{n}\right]
$$

for $m \leq n$. Prove that there exists a constant $c>0$ such that for all $n_{3} \geq n_{2} \geq 2 n_{1}$,

$$
c \pi\left(n_{1}, n_{2}\right) \pi\left(n_{2}, n_{3}\right) \leq \pi\left(n_{1}, n_{3}\right) \leq \pi\left(n_{1}, n_{2}\right) \pi\left(n_{2}, n_{3}\right)
$$

Exercise 9.2. ${ }^{(*)}$ [Supercritical correlation length]
Let $p>1 / 2$. Using duality, prove that

$$
\xi^{\prime}(p)=\left(\lim _{n \rightarrow \infty}-\frac{\log \left(\mathrm{P}_{p}\left[0 \leftrightarrow \partial \Lambda_{n}, 0 \leftrightarrow \infty\right]\right)}{n}\right)^{-1}
$$

is well-defined and show that $\xi^{\prime}(p)=\frac{1}{2} \xi(1-p)$, where ξ denotes the (subcritical) correlation length (as defined in Chapter 2, Section 3 of the lecture notes).

Exercise 9.3. [Universal 2-arm exponent in the half-plane]

Let $p=1 / 2$. The goal is to prove the existence of $c, C>0$ such that for all $n \geq 1$,

$$
\begin{equation*}
c \cdot \frac{1}{n} \leq \mathrm{P}_{\frac{1}{2}}[\underbrace{2 n}_{n}] \leq C \cdot \frac{1}{n}, \tag{1}
\end{equation*}
$$

where the drawing denotes the existence on an open path (red) from the origin to $\partial \Lambda_{n}$ that remains in the upper half-plane and of an open dual path (green) from the dual vertex $\left(-\frac{1}{2},-\frac{1}{2}\right)$ to a dual vertex next to $\partial \Lambda_{n}$ that remains in the upper half-plane and whose first edge is $\left.\left\{\left(-\frac{1}{2},-\frac{1}{2}\right),-\frac{1}{2}, \frac{1}{2}\right)\right\}$. For $x \in \mathbb{Z}$, define the event

where in the drawing the open path (red) starts at $(x, 0)$ and the dual open path (green) starts at $\left(x-\frac{1}{2},-\frac{1}{2}\right)$.
(a) Show that there exists a constant $c^{\prime}>0$ such that for all $n \geq 1$,

$$
\mathrm{P}_{\frac{1}{2}}\left[A_{0}\right] \geq c^{\prime} \cdot \frac{1}{n}
$$

and deduce the lower bound in (1).

Denote by N the (random) number of disjoint open paths from $[-n, n] \times\{0\}$ to $\partial \Lambda_{3 n}$ in the upper half-plane.
(b) Show that $\sum_{x \in[-n, n]} \mathbb{1}_{A_{x}} \leq N$.
(c) Using the BK-Reimer inequality, show that $\mathbb{E}_{\frac{1}{2}}[N] \leq C^{\prime}$ for a constant C^{\prime} that does not depend on n.
(d) Combining (b) and (c), prove that there exists a constant $C^{\prime \prime}>0$ such that for all $n \geq 1$,

$$
\mathrm{P}_{\frac{1}{2}}\left[A_{0}\right] \leq C^{\prime \prime} \cdot \frac{1}{n}
$$

and deduce the upper bound in (1).

Exercise 9.4. [Universal 3-arm exponent in the half-plane]

Let $p=1 / 2$. Prove that there exists $c, C>0$ such that for all $n \geq 1$,

$$
c \cdot \frac{1}{n^{2}} \leq \mathrm{P}_{\frac{1}{2}}[
$$

where the drawing denotes the existence on an open path (red) from the origin to $\partial \Lambda_{n}$, an open dual path (green, on the left of the red path) from the dual vertex $\left(-\frac{1}{2},-\frac{1}{2}\right)$ to a dual vertex next to $\partial \Lambda_{n}$, and an open dual path (green, on the right of the red path) from the dual vertex $\left(\frac{1}{2},-\frac{1}{2}\right)$ to a dual vertex next to $\partial \Lambda_{n}$. All paths remain in the upper half-plane.
Hint: Try to implement a similar strategy as in Exercise 9.3.

