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Percolation: main motivation!

Harry Kesten
Percolation theory for mathematicians,

July 1982.
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red with probability p,
blue with probability 1´ p.

Red path: a path made of red hexagons.

Red Cluster: red connected component.
“Island”
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A porous stone?

Is there a red path from top to bottom in a large lozenge?



QUESTION 1:
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A forest?

How far can we go when starting from a single hexagon in the
center?



QUESTION 2:
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Some percolation processes:

Percolation
on hexagons.

Percolation
on Zd, d ě 2.

Voronoi percolation
in Rd.

Boolean percolation
in Rd.

Phase transition (p “ density of red points).

p0 1pc

All the red clusters are bounded. One giant red cluster.

pc: critical parameter (depends on the model).
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