Percolation theory

ETHzürich

ETH Zürich, Fall 2020

Organization

Coordinator: Laurin Köhler-Schindler (laurin.koehler-schindler@math.ethz.ch)

Organization

Coordinator: Laurin Köhler-Schindler (laurin.koehler-schindler@math.ethz.ch)
Website: https://metaphor.ethz.ch/x/2020/hs/401-4607-59L/

Organization

Coordinator: Laurin Köhler-Schindler (laurin.koehler-schindler@math.ethz.ch)
Website: https://metaphor.ethz.ch/x/2020/hs/401-4607-59L/
Exercises: Weekly on the website. Exercises with a star (*) can be handed in. In class or by email to L. Köhler-Schindler.

Organization

Coordinator: Laurin Köhler-Schindler (laurin.koehler-schindler@math.ethz.ch)
Website: https://metaphor.ethz.ch/x/2020/hs/401-4607-59L/
Exercises: Weekly on the website. Exercises with a star $\left({ }^{*}\right)$ can be handed in. In class or by email to L. Köhler-Schindler.

Forum: forum.math.ethz.ch

Organization

Coordinator: Laurin Köhler-Schindler (laurin.koehler-schindler@math.ethz.ch)
Website: https://metaphor.ethz.ch/x/2020/hs/401-4607-59L/
Exercises: Weekly on the website. Exercises with a star (*) can be handed in. In class or by email to L. Köhler-Schindler.

Forum: forum.math.ethz.ch
Exercise Classes: October 13, November 10, December 8.

Percolation: applied motivations

Percolation: applied motivations

Percolation: applied motivations

How does water flow in rocks?

How do fires propagate in forests?

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

> Random functions

Interactions with other fields

Interactions with other fields

Interactions with other fields

Percolation: main motivation!

Quite apart from the fact that percolation theory had its origin in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods.

Harry Kesten

Percolation theory for mathematicians,
July 1982.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1
$$

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
p=\frac{1}{2}
$$

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

$$
\text { Parameter: } 0 \leqslant p \leqslant 1 \text {. }
$$

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Red path: a path made of red hexagons.

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Red path: a path made of red hexagons.
Red Cluster: red connected component. "Island"

Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Random coloring of the hexagons:
A given hexagon is colored:

- red with probability p,
- blue with probability $1-p$.

Red path: a path made of red hexagons.
Red Cluster: red connected component. "Island"

A porous stone?

QUESTION 1:

Is there a red path from top to bottom in a large lozenge?

$$
p=0
$$

$$
p=1
$$

$$
p=0.1
$$

$$
p=0.2
$$

$$
p=0.3
$$

$$
p=0.4
$$

$$
p=0.7
$$

$$
p=0.8
$$

$$
\begin{aligned}
& +\cdot \cdot 5
\end{aligned}
$$

$$
\begin{aligned}
& 8 \cdot 8:-5 \cdot 4 \cdot+3
\end{aligned}
$$

$$
p=1
$$

$$
p<\frac{1}{2}
$$

$$
p=\frac{1}{2}
$$

$p>\frac{1}{2}$

Rigorous answer to Question 1

Theorem [Kesten, 1980]

For percolation with parameter p, we have

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}_{p}[\underbrace{}_{n}]= \begin{cases}0 & \text { if } p<\frac{1}{2} \\ \frac{1}{2} & \text { if } p=\frac{1}{2} \\ 1 & \text { if } p>\frac{1}{2}\end{cases}
$$

A forest?

QUESTION 2:

How far can we go when starting from a single hexagon in the center?

$p=0$

$p=0.3$

$$
p=0.45
$$

$$
p=0.5
$$

$$
p=0.6
$$

$$
p=0.7
$$

$$
p=0.8
$$

$$
p=1
$$

$$
p<\frac{1}{2}
$$

$$
p=\frac{1}{2}
$$

$$
p<\frac{1}{2}
$$

$$
p=\frac{1}{2}
$$

$$
p>\frac{1}{2}
$$

Rigorous answer to Question 2

Theorem [Kesten, 1980]

For percolation with parameter p, we have

$$
p<\frac{1}{2}
$$

$$
p=\frac{1}{2}
$$

$$
p>\frac{1}{2}
$$

Rigorous answer to Question 2

Theorem [Kesten, 1980]

For percolation with parameter p, we have

Remark: For $p=\frac{1}{2}, \operatorname{Prob}_{p}\left[\sim \simeq \simeq \frac{1}{n^{5 / 48}}\right.$ [Lawler, Schramm, Werner '02]

Some percolation processes:

Percolation on hexagons.

Some percolation processes:

on hexagons.

$$
\text { on } \mathbb{Z}^{d}, d \geqslant 2 \text {. }
$$

Some percolation processes:

Some percolation processes:

on $\mathbb{Z}^{d}, d \geqslant 2$.

Voronoi percolation Boolean percolation in \mathbb{R}^{d}.

Some percolation processes:

Some percolation processes:

Phase transition ($p=$ density of red points).

p_{c} : critical parameter (depends on the model).

