Dr. Meike Akveld

Lösungen Serie 4 – Vektorräume, Unterräume

- 1. (a) Keine Musterlösung
 - (b) " \Rightarrow ": Angenommen $W \not\subset W'$ und $W' \not\subset W$. Seien $w \in W \setminus W'$ sowie $w' \in W' \setminus W$, also $w, w' \in W \cup W'$. Sei $w + w' \in W$, dann ist wegen $-w \in W$ auch $w' = (w + w') + (-w) \in W$, im Widerspruch zur Wahl von w'. Analog argumentiert man, falls $w + w' \in W'$. Also ist $w + w' \not\in W \cup W'$ und somit ist $W \cup W'$ kein Unterraum.
 - " \Leftarrow ": Sei $W \subset W'$, dann ist $W \cup W' = W'$ und somit ein Unterraum nach Voraussetzung. Analog argumentiert man, wenn $W' \subset W$.
 - (c) Sicherlich ist $0_V \in W_1 + W_2$. Seien $u_1, v_1 \in W_1$ und $u_2, v_2 \in W_2$ sowie $\lambda \in \mathbb{K}$, dann ist

$$(u_1 + u_2) - \lambda \cdot (v_1 + v_2) = (u_1 - \lambda \cdot v_1) + (u_2 - \lambda \cdot v_2) \in W_1 + W_2$$

und somit ist $W_1 + W_2$ ein Unterraum.

Wir zeigen nun, das W_1+W_2 der kleinste Unterraum von V ist, der $W_1\cup W_2$ enthält. Sei $W\subset V$ ein Unterraum und sei $W_1\cup W_2\subset W$. Seien $u_1\in W_1$ und $u_2\in W_2$ beliebig, dann sind nach Annahme $u_1,u_2\in W$ und folglich auch $u_1+u_2\in W$. Also ist $W_1+W_2\subset W$. Da W beliebig war, folgt, dass jeder Unterraum von V, der W_1 und W_2 enthält, auch W_1+W_2 , und somit ist W_1+W_2 tatsächlich der kleinste Unterraum von V, der W_1 und W_2 enthält.

- 2. " \Rightarrow ": Angenommen V_{α} ist ein Unterraum, dann ist $0_{\mathbb{K}^3}=(0,0,0)\in V_{\alpha}$ und folglich $\alpha=0$.
 - " \Leftarrow ": Wir müssen zeigen, dass V_0 ein Unterraum ist. Gegeben $x = (x_1, x_2, x_3)$, sei $\Phi(x) := x_1 + x_2 + x_3$. Φ ist eine Abbildung $\mathbb{K}^3 \to \mathbb{K}$ und $V_0 = \Phi^{-1}(\{0\})$. Seien $x, y \in \mathbb{K}^3$ und $\lambda \in \mathbb{K}$, dann gelten

$$\Phi(x+y) = (x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3)$$

$$= (x_1 + x_2 + x_3) + (y_1 + y_2 + y_3) = \Phi(x) + \Phi(y)$$

$$\Phi(\lambda \cdot x) = (\lambda x_1) + (\lambda x_2) + (\lambda x_3) = \lambda (x_1 + x_2 + x_3) = \lambda \Phi(x)$$

wegen der Körperaxiome. Insbesondere ist $\Phi(0_{\mathbb{K}^3}) = 0$ und also $0_{\mathbb{K}^3} \in V_0$, und für alle $x, y \in V_0$, $\lambda \in \mathbb{K}$ gelten $\Phi(x+y) = 0$ sowie $\Phi(\lambda \cdot x) = 0$.

- 3. Da $0 \lambda 0 = 0$ für alle $\lambda \in \mathbb{R}$, folgt aus $A_{ij} = B_{ij} = 0$, dass $A_{ij} \lambda B_{ij} = 0$ gilt. Zudem erfüllt die Nullmatrix mit Einträgen $A_{ij} = 0$ die Restriktionen aus Teilaufgaben (a) und (b). Beides zusammen zeigt, dass W_1, W_2, W_3, W_4 sowie W_5 Unteräume von V sind.
 - (a) Gegeben $A \in V$, seien $B, C \in V$ definiert durch

$$B_{ij} := \begin{cases} A_{ij} & \text{falls } i \ge j \\ 0 & \text{sonst} \end{cases}$$
$$C_{ij} := \begin{cases} A_{ij} & \text{falls } i < j \\ 0 & \text{sonst} \end{cases}$$

Dann sind $B \in W_1, C \in W_2$ und

$$i < j$$
: $(B+C)_{ij} = B_{ij} + C_{ij} = C_{ij} = A_{ij}$
 $i \ge j$: $(B+C)_{ij} = B_{ij} + C_{ij} = B_{ij} = A_{ij}$

Folglich ist $V = W_1 + W_2$. Sei $A \in W_1 \cap W_2$, dann ist $A_{ij} = 0$ falls i < j, wegen $A \in W_1$ und $A_{ij} = 0$ falls $i \ge j$ wegen $A \in W_2$. Also ist $A_{ij} = 0$ für alle i, j und somit $W_1 \cap W_2 = \{0_V\}$, also $V = W_1 \oplus W_2$.

- (b) Keine Musterlösung
- (c) Keine Musterlösung
- 4. (a) Keine Musterlösung
 - (b) Keine Musterlösung
 - (c) Sei $\mathbb{F}_2 = \mathbb{Z}_2$ der Körper mit 2 Elementen $\{\bar{0}, \bar{1}\}$. Da \mathbb{F}_2 mit Addition eine Gruppe mit zwei Elementen ist, gilt $-\bar{0} = \bar{0}$ und $-\bar{1} = \bar{1}$ (vgl. Aufgabe 4 von Serie 2 oder Aufgabe 1 von Serie 3), also x = -x für alle $x \in \mathbb{F}_2$. Also ist id $\mathbb{F}_2 \in V_1 \cap V_2$ und somit $V_1 \cap V_2 \neq \{0\}$.
- 5. Wir bezeichnen mit $0_{\mathcal{F}}: X \to V$ die Abbildung $0_{\mathcal{F}}(x) = 0_V$ für alle $x \in X$.

(a) Der Beweis ist genau gleich wie in Aufgabe 2.

"\Rightarrow": Wenn $\mathcal{F}_{x,v}$ ein Unterraum ist, dann ist $0_{\mathcal{F}} \in \mathcal{F}_{x,v}$. Aus $0_V = 0_{\mathcal{F}}(x) = v$ folgt v = 0.

" \Leftarrow ": $0_{\mathcal{F}}(x) = 0_V$, also $0_{\mathcal{F}} \in \mathcal{F}_{x,0_V}$. Seien $f, g \in \mathcal{F}_{x,0_V}$ und $\lambda \in \mathbb{K}$, dann ist

$$(f - \lambda \cdot g)(x) = f(x) - \lambda \cdot g(x) = 0_V - \lambda \cdot 0_V = 0_V$$

und folglich $f - \lambda \cdot g \in \mathcal{F}_{x,0_V}$. Also ist $\mathcal{F}_{x,0_V}$ ein Unterraum.

(b) Sei $W := \{ h \in \mathcal{F}(X, V) \mid \exists v \in V : h(y) = v \forall y \in X \}$. Sei $f \in \mathcal{F}(X, V)$ beliebig, und sei $f_x \in \mathcal{F}(X, V)$ definiert durch

$$f_x(y) := f(y) - f(x) \quad \forall y \in X$$

Dann ist $f_x(x) = f(x) - f(x) = 0_V$ und also $f_x \in \mathcal{F}_{x,0_V}$. Sei $h_{f(x)} \in W$ definiert durch

$$h_{f(x)}(y) := f(x) \quad \forall y \in X$$

Dann ist

$$\forall y \in X : f_x(y) + h_{f(x)}(y) = (f(y) - f(x)) + f(x) = f(y)$$

und folglich $f = f_x + h_{f(x)}$. Da $f \in \mathcal{F}(X, V)$ beliebig war, haben wir also gezeigt, dass $\mathcal{F}(X, V) = \mathcal{F}_{x,0_V} + W$. Sei $h \in \mathcal{F}_{x,0_V} \cap W$, dann ist $h(x) = 0_V$ wegen $h \in \mathcal{F}_{x,0_V}$ und h(y) = h(x) für alle $y \in X$, wegen $h \in W$. Also ist $h(y) = 0_V$ für alle $y \in X$ und folglich $\mathcal{F}_{x,0_V} \cap W = 0_{\mathcal{F}}$.

Abgabe der schriftlichen Aufgaben: Vor Freitag, den 21. Oktober 12:00 Uhr mittags im Fach Ihrer Assistentin bzw. Ihres Assistenten im HG J 68.