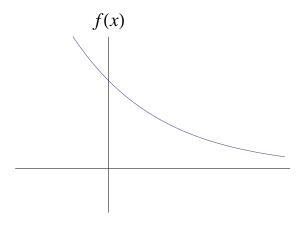
Prof. Dr. Özlem Imamoglu

9.1. MC Fragen: Ableitungen

(a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f' und f'' sagen?



- □ Nichts
- \square Die Funktion f ist positiv.
- \square Die Funktion f ist negativ.
- \square Die erste Ableitung f' ist positiv.
- \square Die erste Ableitung f' ist negativ
- \square Die zweite Ableitung f'' ist positiv.
- \square Die zweite Ableitung f'' ist negativ.
- (b) Sei $f:(a,b)\longrightarrow \mathbb{R}\setminus\{0\}$ monoton wachsend und differenzierbar. Dann gilt:
 - $\Box \frac{1}{f}$ ist monoton wachsend.
 - \Box $\frac{1}{f}$ ist monoton fallend.
 - ☐ Keine Aussage gilt im Allgemeinen.
- (c) Sei $f:(a,b)\longrightarrow I$ streng monoton wachsend, bijektiv und differenzierbar. Dann gilt:
 - \square f^{-1} ist monoton wach send.
 - \square f^{-1} ist monoton fallend.
 - \Box Keine Aussage gilt im Allgemeinen.

9.2. Taylorpolynom Bestimmen Sie jeweils das Taylorpolynom 4. Ordnung an der Stelle x_0 für die folgenden Funktionen und Punkte:

(a)
$$\frac{1}{1+x}$$
, $x_0=0$,

(a)
$$\frac{1}{1+x}$$
, $x_0 = 0$, (b) $\cosh x$ und $\sinh x$, $x_0 = 0$
(c) $\cos(e^{x^2} - 1)$, $x_0 = 0$, (d) $\log(\cos x)$, $x_0 = \frac{\pi}{4}$.

(c)
$$\cos(e^{x^2} - 1)$$
, $x_0 = 0$,

(d)
$$\log(\cos x)$$
, $x_0 = \frac{\pi}{4}$.

9.3. (schriftlich) Annäherung mit Taylor Berechnen Sie, mithilfe der Taylor-Approximation:

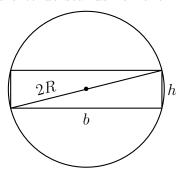
- (a) einen Näherungswert für log(1.1) exakt bis drei Nachkommastellen,
- (b) einen Näherungswert für $\sqrt[3]{65}$ exakt bis fünf Nachkommastellen, wobei das Ergebnis als rationale Zahl gegeben werden muss.

9.4. Anwendungen der Differentialrechnung

- (a) Zeigen Sie, dass unter allen Rechtecken mit gleichen Flächeninhalt A das Quadrat die kleinste Umfang hat.
- (b) Zeigen Sie mithilfe von (a) folgende Jensensche Ungleichung: für jede nicht negative Zahlen x, y gilt

$$\frac{x+y}{2} \ge \sqrt{xy}.$$

(c) Aus einem Baumstamm mit kreisförmigem Querschnitt soll ein Balken mit rechteckigem Querschnitt so herausgeschnitten werden, dass sein Widerstandsmoment $W = \frac{bh^2}{6}$ einen grössten Wert annimmt. Wie muss ein optimaler Balken zugesägt werden? Was ist das maximale Widerstandsmoment?



b: Breite des Balkens, h: Dicke des Balkens, 2R: Durchmesser des Baumstammes.