Proposition. Je zwei ähnliche Matrizen mit Einträgen in K haben dasselbe charakteristische Polynom.

Definition. Sei V ein \mathbb{K} -Vektorraum, seien $T \in \text{End}(V)$ und λ_j ein Eigenwert von T. Setze

$$E_{\lambda_i} := \{ u \in V \mid T(u) = \lambda_i u \} = \operatorname{Ker}(T - \lambda_i I_V).$$

Wir nennen E_{λ_i} den Eigenraum von T zum Eigenwert λ_i und dim (E_{λ_i}) die geometrische Multiplizität von λ_i .

Theorem. Sei V ein endlichdimensionaler \mathbb{K} -Vektorraum. Sei $T \in \text{End}(V)$, sodass $\text{char}_T(X)$ über \mathbb{K} in Linearfaktoren zerfällt. Seien $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$ die paarweise verschiedenen Eigenwerte von T. Dann gilt:

- 1) T ist diagonalisierbar \Leftrightarrow für alle $1 \leq j \leq k$ gilt $m_j = \dim(E_{\lambda_j}) \Leftrightarrow V = \bigoplus_{i=1}^k E_{\lambda_i}$.
- 2) Wenn T diagonalisierbar ist und für jedes $1 \le i \le k$ die Menge $S_i \subset E_{\lambda_i}$ eine Basis von E_{λ_i} ist, dann ist $S := S_1 \cup \cdots \cup S_k$ eine Basis von V bestehend aus Eigenvektoren von T.

Theorem. Sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und sei $T \in \operatorname{End}$. Wenn $W \subset V$ ein T-invarianter Unterraum ist, so teilt das Polynom $\operatorname{char}_{T_W}(X)$ das Polynom $\operatorname{char}_{T}(X)$ in $\mathbb{K}[X]$.

Theorem. Sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und sei $T \in \operatorname{End}(V)$. Sei $u \in V \setminus \{0\}$ und $W := \operatorname{span}(\{T^l(u) \mid l \in \mathbb{N} \cup \{0\}\})$. Sei $k := \dim W$. Dann gelten

- i) $k \ge 0$ und $\{T^l(u) \mid 0 \le l < k\}$ ist eine Basis von W.
- ii) Seien $a_0, \ldots, a_{k-1} \in \mathbb{K}$, sodass $T^k(u) = -a_0u \cdots a_{k-1}T^{k-1}(u)$, dann ist

$$char_{T_W}(X) = (-1)^k (a_0 + a_1 X + \dots + a_{k-1} X^{k-1} + X^k).$$

Theorem. Sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und sei $T \in \operatorname{End}(V)$ mit charakteristischem Polynom $\operatorname{char}_T(X)$. Dann gilt $\operatorname{char}_T(T) = 0$ in $\operatorname{End}(V)$.

Definition. Sei V ein \mathbb{K} -Vektorraum. Eine Abbildung $T \in \text{End}(V)$ heisst

- i) Involution, falls $T \circ T = I_V$.
- ii) Projektion, falls $T \circ T = T$.
- iii) nilpotent, falls ein $k \in \mathbb{N}$ existiert, sodass $T^k = 0$.

Proposition. Sei V ein \mathbb{K} -Vektorraum, in welchem $2 \neq 0$ ist. Sei $T \in \operatorname{End}(V)$ eine Involution. Dann sind alle Eigenwerte von T in $\{\pm 1\}$ und $V = E_1 \oplus E_{-1}$. Insbesondere ist T diagonalisierbar.

Proposition. Sei V ein \mathbb{K} -Vektorraum, sei $P \in \text{End}(V)$ eine Projektion. Dann gelten

- i) Die Eigenwerte von P liegen in $\{0,1\}$ und $V = Ker(P) \oplus E_1$. Insbesondere ist P diagonalisierbar und $E_1 = Im(P)$.
- ii) Sei $P^{\perp} := I_V P$, dann ist $P^{\perp} \circ P^{\perp} = P^{\perp}$. Es ist $\operatorname{Ker}(P^{\perp}) = \operatorname{Im}(P)$ und $\operatorname{Im}(P^{\perp}) = \operatorname{Ker}(P)$.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein Euklidischer Vektorraum, dann gelten für alle $u, v \in V$ und $\lambda \in \mathbb{R}$:

- $i) \|\lambda u\| = |\lambda| \|u\|,$
- $ii) ||u|| \ge 0 und ||u|| = 0 \Leftrightarrow u = 0,$
- iii) (Cauchy-Schwarz Ungleichung) $|\langle u, v \rangle| \leq ||u|| ||v||$ und
- iv) (Dreiecksungleichung) $||u+v|| \le ||u|| + ||v||$.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein Euklidischer Vektorraum, und sei $S = (v_1, \dots, v_k)$ eine geordnete, orthogonale Teilmenge von V und sei $0 \notin S$. Falls $w = \sum_{i=1}^k a_i v_i$ für Skalare $a_i \in \mathbb{R}$, dann gilt

$$a_i = \frac{\langle w, v_i \rangle}{\|v_i\|^2} \quad (1 \le i \le k).$$

Theorem. Sei V ein Euklidischer Vektorraum und $S = (v_1, \ldots, v_n)$ eine geordnete, linear unabhängige Teilmenge von V. Definiere

$$w_1 = v_1$$
 und $w_k = v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, w_j \rangle}{\|w_j\|^2} w_j$ $(2 \le k \le n).$

Dann ist $\tilde{S} = (w_1, \dots, w_n)$ eine geordnete orthogonale Teilmenge von V, deren Elemente alle von 0 verschieden sind, und die $\operatorname{span}(S) = \operatorname{span}(\tilde{S})$ erfüllt.

Korollar. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum, sei $\mathcal{B} = (v_1, \dots, v_n)$ eine ONB von V und sei $T \in \text{End}(V)$. Sei $A = [T]_{\mathcal{B}}$, dann gilt $A_{ij} = \langle T(v_j), v_i \rangle$, $(1 \le i, j \le \dim V)$.

Korollar. Sei (v_1, \ldots, v_k) eine geordnete orthonormale Teilmenge eines Euklidischen Vektorraums $(V, \langle \cdot, \cdot \rangle)$. Seien $W = \operatorname{span}(\{v_1, \ldots, v_k\}) \subset V$ und $y \in V$. Der Vektor $\tilde{y} = \sum_{i=1}^k \langle v, v_i \rangle v_i$ ist das eindeutige Element in W mit den Eigenschaften

- $i) \ y \tilde{y} \in W^{\perp},$
- *ii)* $\forall w \in W : ||y \tilde{y}|| \le ||y w||$.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum. Dann ist die Abbildung $\Phi: V \to V^*$, $v \mapsto \Phi_v$ mit $\Phi_v(u) = \langle u, v \rangle$ für alle $u \in V$ ein Isomorphismus mit Inverse $\Phi^{-1}: V^* \to V$ gegeben wie folgt: Sei $f \in V^*$, dann ist $\Phi^{-1}(f) \in V$ der eindeutig bestimmte Vektor in V, der für alle $u \in V$ die Gleichung $\langle u, \Phi^{-1}(f) \rangle = f(u)$ erfüllt.

Theorem. Seien $(V, \langle \cdot, \cdot \rangle_V)$ und $(W, \langle \cdot, \cdot \rangle_W)$ endlichdimensionale Euklidische Vektorräume. Seien \mathcal{B} , \mathcal{C} geordnete orthonormale Basen von V bzw. von W und sei $T \in \text{Hom}(V, W)$. Dann gilt

$$[T^*]^{\mathcal{B}}_{\mathcal{C}} = ([T]^{\mathcal{C}}_{\mathcal{B}})^T.$$

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum und sei $T \in \operatorname{End}(V)$ selbstadjungiert. Dann existiert eine geordnete Orthonormalbasis von V, deren Elemente alles Eigenvektoren von T sind.

Theorem. Sei $A \in M_{n \times n}(\mathbb{R})$ symmetrisch, dann existiert eine orthogonale Matrix $Q \in M_{n \times n}(\mathbb{R})$, sodass

$$D = Q^{-1}AQ = Q^TAQ$$

eine Diagonalmatrix ist.

Theorem. $Sei(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum. $SeiT \in End(V)$. Folgende sind äquivalent:

- $i) \ \forall u,v \in V : \langle Tu,Tv \rangle = \langle u,v \rangle.$
- *ii)* $TT^* = T^*T = I_V$.
- iii) Sei \mathcal{B} eine ONB von V, dann ist $T(\mathcal{B})$ eine ONB von V.
- iv) Es existiert eine ONB \mathcal{B} von V, sodass $T(\mathcal{B})$ eine ONB von V ist.
- v) T ist eine Isometrie, d.h. $\forall u, v \in V : ||Tu Tv|| = ||u v||$.

Korollar. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum, sei $T \in \text{End}(V)$. Folgende sind äquivalent:

- i) V besitzt eine ONB bestehend aus Eigenvektoren von T zu Eigenwerten, deren Absolutbetrag allesamt gleich 1
- ii) T ist selbstadjungiert und orthogonal.

Definition. Sei V ein endlichdimensionaler \mathbb{K} -Vektorraum, und sei $\beta \in \mathrm{BF}(V)$. Die Darstellungsmatrix von β bezüglich einer geordneten Basis $\mathcal{B} = (v_1, \ldots, v_n)$ von V ist die Matrix $A = [\beta]_{\mathcal{B}} \in M_{n \times n}(\mathbb{K})$ gegeben durch

$$A_{ij} = \beta(v_i, v_j) \quad (1 \le i, j \le n).$$

Theorem. Sei V ein endlichdimensionaler Vektorraum mit geordneten Basen \mathcal{B} und $\tilde{\mathcal{B}}$, sei Q die Basiswechselmatrix von $\tilde{\mathcal{B}}$ - zu \mathcal{B} -Koordinaten und sei $\beta \in BF(V)$. Dann gilt

$$[\beta]_{\tilde{\mathcal{B}}} = Q^T[\beta]_{\mathcal{B}}Q.$$

Insbesondere sind $[\beta]_{\tilde{\mathcal{B}}}$ und $[\beta]_{\mathcal{B}}$ kongruent.

Theorem. Sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und sei $2 \neq 0$ in \mathbb{K} . Dann ist jede symmetrische Bilinearform auf V diagonalisierbar.

Theorem. Sei \mathbb{K} ein Körper in welchem $2 \neq 0$ gilt. Sei $A \in M_{n \times n}(\mathbb{K})$ symmetrisch. Dann ist A kongruent zu einer Diagonalmatrix.

Definition. Sei $n \in \mathbb{N}$ und sei \mathbb{K} ein Körper. Eine Abbildung $\mathbb{K}^n \to \mathbb{K}$ ist eine quadratische Form (über \mathbb{K}) in n Variablen, wenn eine symmetrische Matrix $A \in M_{n \times n}(\mathbb{K})$ existiert, sodass

$$Q(v) = v^T A v \quad (v \in \mathbb{K}^n).$$

Theorem. Sei Q eine quadratische Form auf \mathbb{R}^n . So gilt:

i) Es existiert eine ONB $\mathcal{B} = (w_1, \dots, w_n)$ von \mathbb{R}^n für das standard innere Produkt, es gibt $p, q \in \mathbb{N} \cup \{0\}$ sowie $\lambda_1, \dots, \lambda_{p+q} > 0$, sodass $p+q \leq n$ und

$$Q(v) = \lambda_1 a_1^2 + \dots + \lambda_p a_p^2 - \lambda_{p+1} a_{p+1}^2 - \dots - \lambda_{p+q} a_{p+q}^2$$

für alle $v \in \mathbb{R}^n$ gelten, wobei $v = a_1 w_1 + \dots + a_n w_n$.

ii) Es existiert eine orthogonale Basis $\mathcal{B} = (v_1, \dots, v_n)$ von \mathbb{R}^n für das standard innere Produkt, es gibt $p, q \in \mathbb{N} \cup \{0\}$, sodass $p + q \leq n$ und

$$Q(v) = \tilde{a}_1^2 + \dots + \tilde{a}_p^2 - \tilde{a}_{p+1}^2 - \dots - \tilde{a}_{p+q}^2$$

 $f\ddot{u}r$ alle $v \in \mathbb{R}^n$ gelten, wobei $v = \tilde{a}_1 v_1 + \cdots + \tilde{a}_n v_n$.

Falls p + q = n, dann heisst das Tupel (p, q) Typus von Q.

Theorem. Sei β eine symmetrische Bilinearform auf einem reellen, endlichdimensionalen Vektorraum V, so ist die Anzahl der positiven und der negativen Einträge in irgendeiner Diagonalmatrixdarstellung invariant.

Korollar. Zwei symmetrische, reelle Matrizen $A, B \in M_{n \times n}(\mathbb{R})$ sind genau dann kongruent, wenn $\sigma(A) = \sigma(B)$ gilt.

Theorem. Für jede Matrix $A \in M_{m \times n}(\mathbb{R})$ mit r = Rang(A) existieren Matrizen $Q \in O(n)$, $R \in O(m)$ sowie eine Matrix $D \in M_{m \times n}(\mathbb{R})$ der Form

$$D = \begin{pmatrix} \sigma_1 & 0 & 0 \\ & \ddots & & \vdots \\ 0 & \cdots & \sigma_r & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

 $mit \ \sigma_1 \ge \cdots \ge \sigma_r > 0, \ sodass \ A = RDQ^T \ gilt.$

Definition. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum, sei $T \in \text{End}(V)$. T ist eine Rotation, falls entweder $T = I_V$ oder falls ein 2-dimensionaler Unterraum $W \subset V$ mit einer ONB (v_1, v_2) von W sowie ein $\theta \in \mathbb{R}$ existieren, sodass

$$T(v_1) = \cos \theta v_1 + \sin \theta v_2$$

$$T(v_2) = -\sin \theta v_1 + \cos \theta v_2$$

 $und\ T(v)=v\ f\ddot{u}r\ alle\ v\in W^{\perp}\ gelten.\ T\ ist\ eine\ Rotation\ um\ W^{\perp},\ bzw.\ W^{\perp}\ ist\ die\ Rotationsachse\ von\ T.$

Definition. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum, sei $T \in \text{End}(V)$. T ist eine Reflexion, falls ein 1-dimensionaler Unterraum $W \subset V$ existiert, sodass T(w) = -w für alle $w \in W$ und T(v) = v für alle $v \in W^{\perp}$ gelten. T ist eine Reflexion von V in W.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum, sei $T \in \text{End}(V)$ und seien W_1, \ldots, W_m paarweise orthogonale, T-invariante Unterräume von V der Dimensionen 1 oder 2. sodass $V = W_1 \oplus \cdots \oplus W_m$.

- i) Die Anzahl der Unterräume W_i für welche $T|_{W_i}$ eine Rotation bzw. eine Reflexion ist, ist gerade oder ungerade abhängig davon, ob $\det T = 1$ oder $\det T = -1$.
- ii) Es ist immer möglich V so zu zerlegen, dass die Anzahl der W_i für welche $T|_{W_i}$ eine Reflexion ist, gleich 1 oder 0 ist und zudem, falls T_{W_i} eine Reflexion ist, dim $W_i = 1$ gilt.

Korollar. Seien $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer Vektorraum, $T \in \text{End}(V)$ orthogonal. Es existieren $T_1, \ldots, T_m \in \text{End}(V)$ orthogonal, sodass gelten:

- i) Für alle $1 \le i \le m$ ist T_i ist entweder eine Reflexion oder eine Rotation.
- ii) Es existiert maximal ein i, sodass T_i eine Reflexion ist.
- iii) Für alle $1 \le i, j \le m$ gilt $T_i T_j = T_j T_i$.
- $iv) T = T_1 \cdots T_m.$
- v) Es ist

$$\det(T) = \begin{cases} 1 & \textit{falls } T_i \textit{ eine Rotation ist für alle } 1 \leq i \leq m \\ -1 & \textit{sonst} \end{cases}$$

Theorem. Sei V ein \mathbb{K} -Vektorraum, $T \in \text{End}(V)$, $\lambda \in \mathbb{K}$ ein Eigenwert von T. Dann gelten

- i) $K_{\lambda} \subset V$ ist ein T-invarianter Unterraum und $E_{\lambda} \subset K_{\lambda}$.
- ii) Für alle $\mu \neq \lambda$ ist $(T \mu I_V)|_{K_{\lambda}}$ injektiv.

Theorem. Sei V ein endlichdimensionaler \mathbb{K} -Vektorraum, sei $T \in \operatorname{End}(V)$ und $\operatorname{char}_T(X)$ zerfalle in Linearfaktoren. Seien $\lambda_1, \ldots, \lambda_k$ die paarweise verschiedenen Eigenwerte von T mit algebraischen Multiplizitäten m_1, \ldots, m_k . Seien \mathcal{B}_i Basen von K_{λ_i} , so gelten

- i) $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$ wenn $i \neq j$,
- ii) $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_k$ ist eine Basis von V,
- iii) dim $K_{\lambda_i} = m_i$ für alle $1 \le i \le k$.

Definition. Sei V ein \mathbb{K} -Vektorraum, sei $T \in \text{End}(V)$ und sei $v \in V \setminus \{0\}$ ein Hauptvektor zum Eigenwert λ . Sei $p \in \mathbb{N}$ minimal mit der Eigenschaft $(T - \lambda I_V)^p(v) = 0$. Die geordnete Menge

$$((T - \lambda I_V)^{p-1}(v), \dots, (T - \lambda I_V)(v), v)$$

heisst Zyklus des Hauptvektors v von T zum Eigenwert λ . Dieser Zyklus hat Länge p.

Korollar. Sei $A \in M_{n \times n}(\mathbb{C})$, dann ist $\exp(A) \in \operatorname{Gl}_n(\mathbb{C})$ und $\det(\exp(A)) = \exp(\operatorname{tr}(A))$.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein unitärer Vektorraum. Dann gelten

- (Cauchy-Schwarz Ungleichung) Für alle $v, w \in V$ ist $|\langle v, w \rangle| \leq ||v|| ||w||$ und Gleichheit gilt genau dann, wenn v und w linear abhängig sind.
- Die Abbildung $v \mapsto ||v|| = \sqrt{\langle v, v \rangle}$ ist eine Norm auf V.
- Seien $v, w \in V$, dann ist ||v + w|| = ||v|| + ||w|| genau dann, wenn $v = \lambda w$ für ein $\lambda \in [0, \infty)$.

Proposition. Sei $(V, \langle \cdot, \cdot \rangle)$ ein unitärer Vektorraum mit einer ONB $\mathcal{B} = (v_1, \dots, v_n)$, dann ist

$$v = \sum_{i=1}^{n} \langle v_i, v \rangle v_i \quad (v \in V).$$

Proposition. Seien $(V, \langle \cdot, \cdot \rangle_V)$, $(W, \langle \cdot, \cdot \rangle_W)$ unitäre Vektorräume. Seien $T \in \text{Hom}(V, W)$.

- Wenn T^* existiert, dann existiert auch $(T^*)^*$ und es gilt $(T^*)^* = T$.
- Falls T^* existiert und dim $V < \infty$, dann gilt für jede ONB $\mathcal{B} = (v_1, \dots, v_n)$ von V, dass

$$T^*(w) = \sum_{i=1}^n \langle T(v_i), w \rangle_W v_i \quad (w \in W).$$

• Seien V, W endlichdimensional und seien $\mathcal{B}, \tilde{\mathcal{B}}$ ONB von V, W. Dann ist

$$[T^*]^{\mathcal{B}}_{\tilde{\mathcal{B}}} = ([T]^{\tilde{\mathcal{B}}}_{\mathcal{B}})^*.$$

• Sei $A \in M_{m \times n}(\mathbb{C})$, dann ist $(L_A)^* = L_{A^*}$.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein unitärer Vektorraum und sei T selbstadjungiert.

- i) Alle Eigenwerte von T sind reell.
- ii) Falls dim $V < \infty$, dann existiert eine ONB von V bestehend aus Eigenvektoren von T. Insbesondere ist T diagonalisierbar.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer oder unitärer Vektorraum. Sei $T \in \text{End}(V)$. Wenn $\text{char}_T(X)$ in Linearfaktoren zerfällt, dann existiert eine ONB \mathcal{B} von V, sodass $[T]_{\mathcal{B}}$ eine obere Dreiecksmatrix ist.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler Euklidischer oder unitärer Vektorraum. Sei $T \in \text{End}(V)$ normal.

- i) $||T(v)|| = ||T^*(v)||$ für alle $v \in V$.
- ii) $T cI_V$ ist normal für alle $c \in I_V$.
- $iii) \ T(v) = \lambda v \Rightarrow T^*(v) = \overline{\lambda}v.$
- iv) Seien λ_1, λ_2 verschiedene Eigenwerte von T mit Eigenvektoren v_1, v_2 . Dann gilt $v_1 \perp v_2$.

Theorem. Seien $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler unitärer Vektorraum und sei $T \in \text{End}(V)$. T ist genau dann normal, wenn eine ONB \mathcal{B} von V bestehend aus Eigenvektoren von T existiert.

Theorem. Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler unitärer Vektorraum, sei $T \in \text{End}(V)$ unitär, so gelten:

- i) Alle Eigenwerte von T haben Betrag 1.
- ii) T ist diagonalisierbar.