D-MATH Prof. M. Schweizer

10.1.

- (a) Konstruieren Sie eine Familie $F = (f_{\lambda})_{{\lambda} \in \Lambda}$ von messbaren Funktionen, so dass $\sup_{{\lambda} \in {\Lambda}} f_{\lambda}$ nicht messbar ist.
- (b) Finden Sie ein σ -endliches Mass ν und ein endliches Mass μ , so dass $\nu \ll \mu$, aber ν nicht totalstetig bezüglich μ ist.
- **10.2.** Seien $(\Omega, \mathcal{A}, \mu)$ ein Massraum mit $\mu(\Omega) < \infty$ und \mathcal{A}_0 eine Unter- σ -Algebra von \mathcal{A} . Zeigen Sie, dass zu jedem $f \in \mathcal{L}^1(\mu)$ eine \mathcal{A}_0 -messbare Funktion $g \in \mathcal{L}^1(\mu)$ existiert, so dass für alle $A \in \mathcal{A}_0$

$$\int_A f \, d\mu := \int I_A f \, d\mu = \int I_A g \, d\mu = \int_A g \, d\mu \text{ gilt.}$$

Bemerkung: In der Wahrscheinlichkeitstheorie nennt man g eine Version der bedingten Erwartung von f gegeben A_0 .

10.3. Seien μ , ν σ -endliche Masse auf (Ω, \mathcal{A}) mit $\nu \ll \mu$, und $\lambda = \nu + \mu$. Zeigen Sie:

(a)
$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda} \frac{d\lambda}{d\mu} \mu$$
-f.ü.

(b) Ist
$$f = \frac{d\nu}{d\lambda}$$
, dann ist $0 \le f < 1 \mu$ -f.ü.

(c)
$$\frac{d\nu}{d\mu} = \frac{f}{1-f}.$$

10.4. Sei (Ω, \mathcal{A}) ein messbarer Raum. Betrachten Sie die Menge $\mathcal{R}(\mathcal{A})$ aller signierten Masse auf \mathcal{A} . Für $\nu \in \mathcal{R}(\mathcal{A})$ definieren wir

$$\|\nu\|_{v} := \nu^{+}(\Omega) + \nu^{-}(\Omega) \in [0, \infty).$$

Zeigen Sie, dass $\|\cdot\|_v$ eine Norm auf $\mathcal{R}(\mathcal{A})$ definiert.

Hinweis: Setzen Sie $|\nu|(\cdot):=\nu^+(\cdot)+\nu^-(\cdot)$ und zeigen Sie zuerst, dass für jede Menge $E\in\mathcal{A}$

$$|\nu|(E) = \sup \left\{ \sum_{j=1}^{n} |\nu(E_j)| \colon n \in \mathbb{N}, E_1, ..., E_n \in \mathcal{A} \text{ disjunkt und } \bigcup_{j=1}^{n} E_j = E \right\}$$

gilt.

Abgabetermin:

Bitte geben Sie Ihre Lösungen bis spätestens Dienstag, 09.05.2017.

Allgemeine Informationen sind unter:

http://metaphor.ethz.ch/x/2017/fs/401-2284-00L/