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1 Finite Groups

1.1 Definition and Basic Examples

Let us begin by reminding ourselves of the definition of a (finite) group. Consider a set
G of finitely (or infinitely) many elements, for which we define a law of combination that
assigns to every ordered pair a, b ∈ G a unique element a · b ∈ G. Here the products a · b
and b · a need not be identical. We call G a group if

(i) G contains an element e ∈ G such that e · a = a · e = a for all a ∈ G. (e is then
called the unit element or identity element.)

(ii) To every a ∈ G, there exists an inverse a−1 ∈ G so that a · a−1 = a−1 · a = e.

(iii) The composition is associative, i.e.

(a · b) · c = a · (b · c) . (1.1.1)

Simple examples of groups are the set of all integers Z, with the group operation being
addition; or the set of all non-zero rationals Q∗ or reals R∗ with the group operation being
multiplication.

A more general class of examples is provided by the transformation groups. Let W be
some set, and let G be the set of transformations

f : W → W (1.1.2)

that are one-to-one, i.e. x 6= y implies f(x) 6= f(y), and onto, i.e. for every y ∈ W , there
exists an x ∈ W such that y = f(x). Then G defines a group, where the group operation
is composition, i.e.

(f · g) (x) = f(g(x)) . (1.1.3)

The identity element of G is the trivial transformation e(x) = x. Inverses exist since
the transformations are one-to-one and onto, and the composition of maps is always
associative. A prominent example of this kind are the symmetric groups Sn that
are the transformation groups associated to Wn = {1, . . . , n}. The elements of Sn are
the permutations, i.e. the invertible maps from {1, . . . , n} to itself. We may label them
compactly as (here n = 7)

(1324)(5)(67) ←→



1 7→ 3
3 7→ 2
2 7→ 4
4 7→ 1
5 7→ 5
6 7→ 7
7 7→ 6

(1.1.4)
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A group G is called abelian if a · b = b · a for all a, b ∈ G. For example, (Z,+) and
(R∗, ·) are abelian, while the permutation groups Sn with n ≥ 3 are not. A group is cyclic
if it consists exactly of the powers of some element a, i.e. the group elements are

e ≡ a0 ≡ ap , a , a2 , . . . , ap−1 (1.1.5)

with the group operation
al · am = al+m , (1.1.6)

where l+m is evaluated mod p. This cyclic group will be denoted by Cp in the following,
and it also defines an abelian group.

Another important finite group is the dihedral group Dn, which is the symmetry
group of a regular n-gon in the plane. Its elements are of the form

e ≡ dn , d , d2 , . . . , dn−1 , s , sd , sd2 , . . . , sdn−1 , (1.1.7)

with the relations
s2 = dn = e , d−ks = sdk . (1.1.8)

(Here d denotes the clockwise rotation of the n-gon, while s is the reflection around an
axis.) Using (1.1.8) it is easy to see that the group elements of the form (1.1.7) close
under the group operation.

For a finite group G, the order |G| of G is the number of elements in G. For example,
for the cyclic group defined by (1.1.5), the order is |Cp| = p, while for the dihedral group
we have |Dn| = 2n and for the symmetric group the order is

|Sn| = n! . (1.1.9)

1.2 Representations

A representation of a finite group G on a finite-dimensional complex vector space V is a
homomorphism

ρ : G→ Aut(V ) (1.2.1)

of G into the group of automorphisms of V . This is to say, to every a ∈ G, ρ(a) is an
endomorphism of V that is invertible. Furthermore, the structure of G is respected by
this map, i.e.

ρ(a · b) = ρ(a) ◦ ρ(b) ∀a, b ∈ G , (1.2.2)

where ‘◦’ stands for composition of maps in Aut(V ). In particular, it follows from this
property that

ρ(e) = 1 , (1.2.3)

the identity map from V → V , and that

ρ(a−1) = (ρ(a))−1 . (1.2.4)
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We say that such a map ρ gives V the structure of a G-module; when there is little ambi-
guity about the map ρ (and we are afraid, even sometimes when there is) we sometimes
call V itself the representation of G. In this vein we will often suppress the symbol ρ and
write a ·v or av for (ρ(a))(v). The dimension of V will sometimes be called the dimension
of the representation ρ.

If V has finite dimension, then upon introducing a basis in V , the linear transfor-
mations can be described by non-singular n × n matrices. Thus a finite-dimensional
representation ρ is an assignment of matrices ρ(a) for each group element a ∈ G such
that (1.2.2) holds, where ‘◦’ on the right-hand-side stands for matrix multiplication. In
this lecture we will always only consider finite-dimensional representations of groups.

As an example consider the symmetric group S3, that consists of the 6 permutations
of the three symbols {1, 2, 3}. It is generated by the two transpositions

σ1 = (12)(3) , σ2 = (1)(23) (1.2.5)

subject to the relations that

σ2
1 = σ2

2 = e , σ1σ2σ1 = σ2σ1σ2 ; (1.2.6)

the entire group then consists of the six group elements

e , σ1 , σ2 , σ1σ2 , σ2σ1 , σ1σ2σ1 . (1.2.7)

It posseses a natural 3-dimensional representation, for which the group elements act as
permutation matrices; thus the two generators σ1 and σ2 are represented by

ρ(σ1) =

 0 1 0
1 0 0
0 0 1

 , ρ(σ2) =

 1 0 0
0 0 1
0 1 0

 , (1.2.8)

etc. It is easy to see that this defines a representation of S3, i.e. that (1.2.2) is satisfied
for all elements of S3. (This is just a consequence of the fact that the relations (1.2.6)
are satisfied for ρ(σ1) and ρ(σ2).) Another representation of S3 is the 1-dimensional
representation, the so-called alternating representation, defined by the determinant of
these 3-dimensional matrices; it satisfies

ρd(σ1) = ρd(σ2) = ρd(σ1σ2σ1) = −1 , (1.2.9)

as well as
ρd(σ1σ2) = ρd(σ2σ1) = ρd(e) = +1 . (1.2.10)

Again, it is straightforward to check that ρd satisfies (1.2.2), now with ‘◦’ standing for
regular multiplication.

A subrepresentation W is a vector subspace W ⊆ V wich is invariant under G, i.e.
which has the property that

ρ(a)w ∈ W ∀w ∈ W , a ∈ G . (1.2.11)
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A representation V is called irreducible if V does not contain any subrepresentation
other than W = V or W = {0}. Otherwise the representation is called reducible.

Note that the above 3-dimensional representation (1.2.8) of S3 is not irreducible (i.e.
it is reducible). In particular, it contains the 1-dimensional subrepresentation

W = 〈e1 + e2 + e3〉 . (1.2.12)

Indeed, it is easy to see that ρ(a)(e1 + e2 + e3) = (e1 + e2 + e3), i.e. that ρW (a) = 1 for
all a ∈ S3. This representation is therefore called the trivial representation; obviously the
trivial representation with ρ(a) ≡ 1 for all a ∈ G exists for every group G.

If V and W are representations of G, the direct sum V ⊕W is also a representation
of G, where the action of G is defined by

ρ = ρV ⊕ ρW . (1.2.13)

Similarly, if V and W are representations of G, their tensor product V ⊗W is also a
representation of G. Recall that if ei, i = 1, . . . , n and fj, j = 1, . . . ,m are basis vectors
for V and W , respectively, then a basis for V ⊗W is described by the pairs

ei ⊗ fj , i ∈ {1, . . . , n} , j ∈ {1, . . . ,m} . (1.2.14)

(Thus the tensor product V ⊗W has dimension dim(V ) dim(W ).) The tensor product
representation is then defined by

a(v ⊗ w) = (a · v)⊗ (a · w) ∀a ∈ G , v ∈ V , w ∈ W . (1.2.15)

It is immediate that this defines a representation of G.
Finally, if V is a representation of G, then also the dual vector space V ∗ is a G-

representation. In order to define the G-action on V ∗ we use as a guiding principle that
the natural pairing 〈·, ·〉 between V ∗ and V should be invariant under G, i.e. that

〈ρ∗(a)(v∗), ρ(a)(v)〉 = 〈v∗, v〉 , (1.2.16)

where a ∈ G, v ∈ V and v∗ ∈ V ∗ are arbitrary. By rewriting this condition, replacing v
by ρ(a−1)v, we obtain the defining relation for ρ∗(a)

〈ρ∗(a)(v∗), v〉 = 〈v∗, ρ(a−1)v〉 . (1.2.17)

Note that combining the definition of the dual and the tensor product then also allows us
to make

Hom(V,W ) ∼= V ∗ ⊗W (1.2.18)

into a G-representation, provided that V and W are G-representations. (Here Hom(V,W )
is the space of vector space homomorphisms from V to W .) More explicitly, on the vector
space homomorphisms ϕ : V → W the G-action is defined by

(aϕ) (v) = aϕ(a−1v) . (1.2.19)
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1.3 Complete Reducibility

As we have seen above, there are many different representations of a finite group. Before
we begin our attempt to classify them we should try to simplify life by restricting our
search somewhat. Specifically, we have seen that representations of G can be built up
out of other representations by linear algebraic operations, most simply by taking the
direct sum. We should focus then on representations that are ‘atomic’ with respect to
this operation, i.e. that cannot be expressed as a direct sum of others; the usual term
for such a representation is indecomposable. Happily, the situation is as nice as it could
possibly be: a representation is atomic in this sense if and only if it is irreducible, i.e.
contains no proper subpresentation; and every representation is equivalent to the direct
sum of irreducibles, in a suitable sense uniquely so. The key to all of this is the following:

Proposition: If W is a subrepresentation of a representation V of a finite group G, then
there is a complementary invariant subspace W ′ of V so that V = W ⊕W ′.

Proof: One simple way to prove this is the following. We define a positive definite
hermitian inner product 〈·, ·〉 on V which is preserved by each a ∈ G via

〈v, w〉 ≡
∑
a∈G

〈av, aw〉0 , (1.3.1)

where 〈·, ·〉0 is any hermitian inner product on V . Recall that a hermitian inner product
on V is an inner product satisfying

〈v, w〉 = 〈w, v〉∗ (1.3.2)

as well as
〈v, v〉 ≥ 0 , (1.3.3)

with equality if and only if v = 0 in V . On any n-dimensional complex vector space
such an inner product exists. If 〈·, ·〉0 is an hermitian inner product on V , then so is 〈·, ·〉
defined by (1.3.1). Furthermore, 〈·, ·〉 is then invariant under the action of G, i.e. we have

〈v, w〉 = 〈bv, bw〉 for any b ∈ G, v, w ∈ V . (1.3.4)

(This last statement simply follows from the fact that

〈bv, bw〉 =
∑
a∈G

〈abv, abw〉0 =
∑
a′∈G

〈a′v, a′w〉0 = 〈v, w〉 , (1.3.5)

where in the middle step we have relabelled the sum over a by a sum over a′ = ab — as
a runs over the whole group G, so does a′, since the map from a 7→ a′ is one-to-one with
inverse a = a′b−1.)

Now with respect to the invariant hermitian inner product 〈·, ·〉 we define the orthog-
onal complement of W by

W⊥ := {u ∈ V : 〈u,w〉 = 0 , ∀w ∈ W} . (1.3.6)
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Since the hermitian inner product is non-degenerate, we have

V = W ⊕W⊥ , (1.3.7)

i.e. the intersection of W and W⊥ is just the zero vector. Thus W⊥ plays the role of W ′

in the proposition.
Finally, we observe that W⊥ also defines a subrepresentation of V ; to see this we only

need to show that au ∈ W⊥ for any a ∈ G and u ∈ W⊥. But since

〈w, au〉 = 〈a−1w, u〉 = 0 (1.3.8)

for any w ∈ W , this is the case, and we have shown that W⊥ is a suberpresentation of V .

Note that by induction, this result implies that any (finite-dimensional) representation
of a finite group G is completely reducible, i.e. that it can be written as a direct sum of
irreducible representations. As we shall see also compact continuous groups have this
property — in fact the proof is fairly analogous since we can simply replace the sum over
the group elements in (1.3.1) by an integral, using the invariant Haar measure of the
compact group. However, there are also (infinite) groups for which complete reducibility
does not hold. For example, for the group (Z,+) the 2−dimensional representation

n 7→
(

1 n
0 1

)
(1.3.9)

leaves the 1-dimensional subspace spanned by e1 invariant. However, there is no comple-
mentary subspace that would also be invariant under the action of the group, and hence
the above representation is reducible but indecomposable, i.e. it cannot be written as a
direct sum of two 1-dimensional representations. However, for the remainder of these
lectures we shall always consider groups whose representations are completely reducible.

For the example of the 3-dimensional representation ρ from (1.2.8), we have seen
above, see eq. (1.2.12), there it contains a one-dimensional subrepresentation W . With
respect to the standard inner product, the orthogonal complement of W is then generated
by

V ≡ W⊥ = 〈f1 = (1,−1, 0) , f2 = (0, 1,−1)〉 . (1.3.10)

One easily confirms that the two generators in (1.2.8) act as

ρ(σ1)f1 = −f1 , ρ(σ1)f2 = f1 + f2 , (1.3.11)

as well as
ρ(σ2)f1 = f1 + f2 , ρ(σ2)f2 = −f2 , (1.3.12)

i.e. the two generators are represented by the 2× 2 matrices

ρ(σ1)V =

(
−1 1
0 1

)
, ρ(σ2)V =

(
1 0
1 −1

)
. (1.3.13)
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Again, one easily confirms that these matrices satisfy (1.2.6), as they must. Furthermore,
it is easy to see that W⊥ does not contain any invariant 1-dimensional subspace, and
hence that it must be irreducible. Thus the 3-dimensional representation (1.2.8) is in
fact a direct sum of the 1-dimensional representation W as well as the 2-dimensional
representation V ≡ W⊥. V is called the ‘standard’ representation.

1.4 Equivalence of Representations and Schur’s Lemma

For our example of S3 we have now found three irreducible representations: the trivial
representation W (1.2.12), the representation by signs ρd defined by (1.2.9) and (1.2.10),
as well as the representation W⊥ defined by (1.3.13). As we shall see later, these are in
fact the only irreducible representations of S3. However, before we can explain this, we
first need to understand when we should regard two representations as ‘being the same’.

We shall say that two representations ρ1 : G→ V1 and ρ2 : G→ V2 are equivalent (or
‘the same’) provided that there exists an invertible linear map (in particular, this therefore
implies that V1 and V2 have the same vector space dimension, n = dim(V1) = dim(V2))

T : V1 → V2 (1.4.1)

such that
T ◦ ρ1(a) = ρ2(a) ◦ T , ∀a ∈ G , (1.4.2)

i.e. that ρ1 = T−1 ◦ρ2 ◦T . In terms of n×n matrices, this condition therefore means that
the n× n matrices ρ1(a) and ρ2(a) are conjugate to one another for all a ∈ G, where the
conjugating matrix T is independent of a. Note that for 1-dimensional representations,
two representations ρ1 and ρ2 are equivalent if and only if ρ1(a) = ρ2(a) for all a ∈ G.

Now that we have understood when two representations are the same, we can explain
in which sense the decomposition of a representation into irreducibles is unique. This is
a consequence of

Schur’s Lemma: Let V and W be irreducible representations of G and T : V → W a
G-module homomorphism, i.e. a linear map satisfying

T ◦ ρV = ρW ◦ T . (1.4.3)

Then

(i) Either T is an isomorphism or T = 0.

(ii) If V = W , then T = λ · 1 for some λ ∈ C. (Here 1 is the identity map.)

Proof: First we note that the kernel of T is an invariant subspace of V , since if v ∈ ker(T )
then (1.4.3) implies that

T
(
ρV (a) (v)

)
= ρW (a)

(
T (v)

)
= 0 , (1.4.4)
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i.e. ρV (a) (v) is also in the kernel of T . Similarly, the image of T is an invariant subspace
of W : if w ∈ W is in the image of T , i.e. w = T (v), then

ρW (a)
(
T (v)

)
= T

(
ρV (a)(v)

)
(1.4.5)

is also in the image of T . Since V is irreducible, it follows that either ker(T ) = V — in
which case T ≡ 0 — or ker(T ) = {0}, in which case T is one-to-one. Similarly, since W is
irreducible, either im(T ) = {0} — in which case T ≡ 0 — or im(T ) = W , i.e. T is onto.
Combining these two statements either T ≡ 0, or T is both one-to-one and onto, i.e. an
isomorphism. This proves (i).

In order to prove (ii), we use that T must have at least one eigenvalue λ ∈ C. But then
T −λ ·1 has a non-zero kernel, and hence, since it is also a G-module homomorphism, by
the argument of case (i), it follows that T − λ · 1 ≡ 0. This proves that T = λ · 1, i.e. the
statement (ii).

As we have seen above, any representation V can be completely decomposed into
irreducibles, i.e. we can write

V = V ⊕n1
1 ⊕ · · · ⊕ V ⊕nkk , (1.4.6)

where the Vi are distinct irreducible representations, and the ni denote the multiplicities
with which these representations appear in the decomposition. Schur’s Lemma now im-
plies that this decomposition is unique in the sense that the same factors and the same
multiplicities always appear. In order to see this, let us assume that we can also write V
as

V = W⊕m1
1 ⊕ · · · ⊕W⊕ml

l , (1.4.7)

where Wj are distinct irreducible representations, and mj denote the multiplicities of these
representations. Then since the identity map 1 : V → V is a G-module homomorphism,
i.e. satisfies (1.4.3), Schur’s Lemma implies that 1 must map the summand V ⊕nii into the
summand W

⊕mj
j for which Wj

∼= Vi, and furthermore that the multiplicities must agree.
This proves the uniqueness of the decomposition (4.2.1).

As we will see below, each finite group G only has finitely many irreducible repre-
sentations. Once these are known, we therefore know in effect, because of (4.2.1), the
most general representation of the group G. Thus in the following we shall concentrate
on classifying the irreducible representations. One very powerful statement that we will
derive is that the dimensions of these irreducible representations satisfies the identity

|G| =
∑

R irrep

dim(R)2 . (1.4.8)

For example, for the case of S3, this is the identity

3! = 6 = 1 + 1 + 22 , (1.4.9)

showing that the three irreducible representations from above, two 1-dimensional rep-
resentations and the two-dimensional standard representation V , are in fact the only
irreducible representations of S3.
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1.5 Characters

There is a remarkably effective tool for understanding the representations of a finite
group G, called character theory. It is in effect a way of keeping track of the eigenvalues
of the action of the group elements. Of course, specifying all eigenvalues of the action
of each element of G would be unwieldy, but fortunately, this would also be redundant.
For example, if we know the eigenvalues {λi} of an element a ∈ G, we also know the
eigenvalues of ak for any k — they are just {λki }. The key observation here is that it
is enough to give, for example, the sum of the eigenvalues of each element a ∈ G since
knowing the sums

∑
i λ

k
i is equivalent to knowing the eigenvalues {λi} themselves. This

then motivates the definition of the character of a representation as follows.
If V is a representation of G, its character χV is the complex-valued function on the

group defined by
χV (a) = Tr(a|V ) , (1.5.1)

i.e. the trace of a on V . Note that in particular, we have

χV (bab−1) = χV (a) , (1.5.2)

i.e. the character χV is constant on the conjugacy classes of G. (Recall that the conjugacy
class [a] of a ∈ G consists of all group elements that are conjugate to a, i.e. that are of
the form bab−1 for some b ∈ G. This relation defines an equivalence relation, and hence
the group can be split up into disjoint conjugacy classes. Note that the conjugacy class
of the identity element just consists of the identity element itself.) A function that does
not depend on the representative of each conjugacy class is called a class function. Note
that for the conjugacy class of the identity we simply have χV (e) = dim(V ).

Suppose V and W are representations of G. Then we have

χV⊕W = χV + χW , χV⊗W = χV · χW χV ∗ = χV . (1.5.3)

In order to understand these identities, we consider a fixed group element a ∈ G. Then
for the action of a, V has the eigenvalues {λi} while W has the eigenvalues {µj}. Then
the eigenvalues on V ⊕W and V ⊗W are {λi, µj} and {λi · µj}, respectively, from which
the first two formulae follow. Similarly {λ−1

i = λi} are the eigenvalues for g on V ∗, where
we have used that all eigenvalues are n’th roots of unity, with n the order of the group
element a; this proves the last identity.

As we have said before, the character of a representation of a group G is really a
function on the set of conjugacy classes in G. This suggests expressing the basic informa-
tion about the irreducible representations of a group G in the form of a character table.
This is a table with the conjugacy classes [a] of G listed across the top, usually given
by a representative a, with the number of elements in each conjugacy class over it; the
irreducible representations V of G are listed on the left, and in the appropriate box the
value of the character χV on the conjugacy class [a] is given. For example, for the group
S3 the character table takes the form given in Table 1.

11



1 3 2
S3 e (12) (123)

trivial 1 1 1
alternating 1 -1 1
standard V 2 0 -1

Table 1: Character Table of S3

Note that the conjugacy class (12) contains the three generators (12), (23) and (13),
while the conjugacy class (123) contains the two generators (123) and (132). The traces
in the trivial and alternating — the former is the representation W defined in (1.2.12),
while the latter is the representation defined by ρd in (1.2.9) and (1.2.10) — are immediate
from the definition; the trace for (12) in V follows directly from (1.3.13), while that of
(123) = (23)(12) = σ2σ1 or (132) = (12)(23) = σ1σ2 follows from

ρV (σ2σ1) =

(
−1 1
−1 0

)
, ρV (σ1σ2) =

(
0 −1
1 −1

)
. (1.5.4)

Note that, by (1.5.3), the character in the 3-dimensional representation ρ in (1.2.8) (that
can be written as W ⊕ V ) is then

χρ(e) = 3 , χρ(12) = 1 , χρ(123) = 0 (1.5.5)

as one also directly verifies. In fact, we could have determined the decomposition of ρ into
W ⊕ V from this character identity since the three character functions are independent.
This is to say, if we make the ansatz

Vρ = n1 (trivial) + n2(alternating) + n3 V (1.5.6)

then the right-hand-side implies that

χV (e) = n1 + n2 + 2n3 , χV (12) = n1 − n2 , χV (123) = n1 + n2 − n3 . (1.5.7)

So for the case at hand, we get the identities

n1 + n2 + 2n3 = 3 , n1 − n2 = 1 , n1 + n2 − n3 = 0 , (1.5.8)

from which n1 = 1, n2 = 0 and n3 = 1 is the only solution. This basic idea will play an
important role in the following.

1.6 The Projection Formula

We now want to make this more systematic, and in particular, determine the trivial factor
in the decomposition of an arbitrary representation. Suppose V is a representation of G.
Then we define the invariant subspace of V as

V G = {v ∈ V : av = v ∀a ∈ G} . (1.6.1)

12



We define the map

ϕ =
1

|G|
∑
a∈G

a ∈ End(V ) . (1.6.2)

Note that ϕ defines a G-module homomorphism, i.e. b ◦ ϕ = ϕ ◦ b for any b ∈ G; this
follows simply from the fact ∑

a∈G

a =
∑
a∈G

b−1ab =
∑
a′∈G

a′ , (1.6.3)

where we have defined a′ = b−1ab in the last step. Next we claim that ϕ defines the
projection of V onto V G. First, we show that ϕ(V ) ⊂ V G: let v = ϕ(w). Then we have

b ϕ(w) =
1

|G|
∑
a∈G

baw =
1

|G|
∑
a′∈G

a′w = ϕ(w) , (1.6.4)

where a′ = ba, thus showing ϕ(V ) ⊂ V G. Conversely, suppose v ∈ V G. Then

ϕ(v) =
1

|G|
∑
a∈G

av =
1

|G|
∑
a∈G

v = v , (1.6.5)

thus showing V G ⊂ ϕ(V ). Hence we conclude that ϕ(V ) = V G. Note that the last
identity also implies that ϕ ◦ ϕ = ϕ.

We can use this method to determine explicitly the multiplicity with which the trivial
representation appears in V ; this number is just

n1 = dimV G = TrV (ϕ) =
1

|G|
∑
a∈G

TrV (a) =
1

|G|
∑
a∈G

χV (a) . (1.6.6)

For example, for the case of the 3-dimensional representation ρ in (1.2.8) (that can be
written as W ⊕W⊥) the multiplicity with which the trivial representation (that we called
W ) appears in ρ equals

n1 =
1

6

(
χρ(e) + 3χρ

(
(12)

)
+ 2χρ

(
(123)

))
=

1

6

(
3 + 3 · 1 + 2 · 0

)
= 1 . (1.6.7)

However, we can actually do much more with this idea. First we note that

Hom(V,W )G = {G-module homomorphism from V to W} , (1.6.8)

since the condition that ϕ : V → W is G-invariant means (see eq. (1.2.19)) that for all
a ∈ G

aϕ(a−1v) = ϕ(v) =⇒ ϕ ◦ a′ = a′ ◦ ϕ (a′ = a−1) , (1.6.9)

compare (1.4.3). Next we observe that if V is irreducible, then by the proof of Schur’s
Lemma, ker(ϕ) is either 0 or V itself, and

dim
(
Hom(V,W )G

)
= mV ≡ multiplicity with which V appears in W . (1.6.10)
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On the other hand, we know that

Hom(V,W ) ∼= V ∗ ⊗W , (1.6.11)

and thus we can apply the above trick to this tensor product. Using the character formula
for the tensor product and the dual representation, see eq. (1.5.3), we therefore conclude
that

mV =
1

|G|
∑
a∈G

χV (a) · χW (a) . (1.6.12)

Thus we can determine the multiplicity with which every irreducible representation ap-
pears in a given representation using these character techniques. For example, for the
above 3-dimensional representation ρ of S3, see (1.2.8), we deduce from this that

n2 =
1

6

(
χa(e)χρ(e) + 3 · χa

(
(12)

)
χρ
(
(12)

)
+ 2 · χa

(
(123)

)
χρ
(
(123)

))
=

1

6

(
(1)(3) + 3 · (−1) · 1 + 2 · (1)(0)

)
= 0 (1.6.13)

and

n3 =
1

6

(
χW⊥(e)χρ(e) + 3 · χW⊥

(
(12)

)
χρ
(
(12)

)
+ 2 · χW⊥

(
(123)

)
χρ
(
(123)

))
=

1

6

(
(2)(3) + 3 · (0) · 1 + 2 · (−1)(0)

)
= 1 , (1.6.14)

in agreement with what we saw above.

Note that if W is also irreducible, we learn from this that the characters of the irre-
ducible representations are orthonormal with respect to the hermitian inner product on
the space of class functions defined by

(α, β) =
1

|G|
∑
a∈G

α(a) β(a) . (1.6.15)

For example, for the case of S3 above, this property can be directly read off from the
character table, see Tab. 1, where the numbers over each conjugacy class tell us how
many times to count entries in that column.

As a consequence it immediately follows that the number of irreducible representations
of G is less than or equal to the number of conjugacy classes. In fact, we shall soon see
that the number is always exactly equal, i.e. that there are no non-zero class functions
that are orthogonal to all characters.

It is very instructive to apply these ideas to the regular representation of G, i.e. to
the left-action of G on itself. For the regular representation, the underlying vector space
R has a basis {ea} labelled by the group elements a ∈ G, and the action of b ∈ G on ea
equals

b (ea) = eba . (1.6.16)
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This clearly defines a representation R of G of dimension dim(R) = |G|. It is clear by
construction that the character of R equals

χR(a) =

{
0 if a 6= e
|G| if a = e.

(1.6.17)

If we decompose R into irreducibles as R =
⊕

i V
⊕ni
i , then

ni =
1

|G|
∑
a∈G

χVi(a)χR(a) = χVi(e) = dim(Vi) . (1.6.18)

Thus we derive the desired relation between the size of the group and the dimensions of
the irreducible representations,

|G| =
∑
i

dim(Vi)
2 . (1.6.19)

It remains to show that there are no non-zero class functions that are orthogonal to
all characters, i.e. that the number of irreducible representations equals the number of
conjugacy classes of G. To this end suppose that α : G→ C is any function on the group
G. Given any representation V of G we define the endomorphism of V

ϕα,V =
∑
a∈G

α(a) · a : V → V . (1.6.20)

We now claim that ϕα,V is a homomorphism of G-modules, i.e. satisfies

b ◦ ϕα,V = ϕα,V ◦ b ∀ b ∈ G (1.6.21)

for all representations V if and only if α is a class function, i.e. if

α(bab−1) = α(a) ∀ a, b ∈ G . (1.6.22)

In order to see this let us write

(ϕα,V ◦ b)(v) =
∑
a∈G

α(a) · a(bv)

=
∑
a∈G

α(bab−1) · bab−1(bv) [substitute a 7→ bab−1]

=
∑
a∈G

α(bab−1) · b(av) . (1.6.23)

Now if α is a class function, α(bab−1) = α(a), then the last equation can be written as

b
(∑
a∈G

α(a) · av
)

= (b ◦ ϕα,V )(v) . (1.6.24)
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Conversely, suppose α is not a class function, i.e. there exist a0, b0 ∈ G such that
α(b0a0b

−1
0 ) 6= α(a0). We consider the regular representation of G, i.e. the representation

of G on itself by left-action, see eq. (1.6.16). For v = ee we then have

(ϕα,G ◦ b0)(ee) =
∑
a∈G

α(b0ab
−1
0 ) · eb0a 6=

∑
a∈G

α(a) · eb0a = (b0 ◦ ϕα,G)(ee) , (1.6.25)

where the inequality is a consequence of the fact that the coefficient of the basis vector
eb0a0 is different between the two sides. This proves the converse direction.

This result now implies that the characters of the irreducible representations form an
orthonormal basis for the space of class functions. To see this suppose that α is a class
function that is orthonormal to all the characters of the irreducible representations, i.e.∑

a∈G

α(a)χV (a) = 0 (1.6.26)

for all (irreducible) V . (Note that since this is true for all representations, we may use
χV ∗ = χV to remove the complex conjugate from the second factor.) Let V be one of
these irreducible representations, and consider again the endomorphism ϕα,V defined as
above in eq. (1.6.20). Then by Schur’s Lemma ϕα,V = λ · 1 for some λ ∈ C, and with
n = dim(V ) we have

λ =
1

n
TrV (ϕα,V ) =

1

n

∑
a∈G

α(a)χV (a) = 0 . (1.6.27)

Thus ϕα,V = 0 or
∑

a∈G α(a) · a = 0 on any irreducible representation V of G. But since
any representation can be written as a direct sum of irreducibles, this statement is true
on any representation, in particular the regular representation. But then, by a similar
argument as above in eq. (1.6.25), it follows that α ≡ 0. This completes the proof.

1.7 The group algebra

There is an important notion that we have already dealt with implicitly, but not explicitly:
this is the group algebra CG associated to a finite group G. This is an object that, for
all intents and purposes, can completely replace the group G itself. Any statement about
the representations of G has an exact equivalent statement about the group algebra.

The underlying vector space of the group algebra of G is the vector space with basis
{ea} corresponding to the different elements a ∈ G, i.e. the underlying vector space of the
regular representation. We define the algebra structure on this vector space simply by

ea · eb = eab . (1.7.1)

By a representation of the group algebra CG on a vector space V we mean simply an
algebra homomorphism

CG→ End(V ) , (1.7.2)
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i.e. a representation V of CG is the same thing as a left CG-module. Note that a repre-
sentation ρ : G → End(V ) will extend, by linearity, to a map ρ̃ : CG → End(V ) so that
representations of CG correspond exactly to representations of G. The left CG-module
given by CG itself corresponds to the regular representation.

If {Wi} are the irreducible representations of G, then we have seen that the regular
representation R decomposes as

R =
⊕
i

(Wi)
⊕ dim(Wi) . (1.7.3)

We can now refine this in terms of the group algebra as the statement that, as algebras,

CG ∼=
⊕
i

End(Wi) . (1.7.4)

To see this we recall that for any representation W of G, the map ρ : G → End(W )
extends by linearity to a map CG → End(W ). Applying this to each of the irreducible
representations Wi gives us a canonical map

ϕ : CG→
⊕
i

End(Wi) . (1.7.5)

This map is injective since the representation on the regular representation is faithful, i.e.
different group elements act differently. Since both have dimension

∑
(dimWi)

2, the map
is an isomorphism.

1.8 Crystal-field splitting

As an application of these techniques we consider the following physical problem which
can be solved elegantly using group theoretic methods. (This analysis was pioneered by
Bethe in the 1920s.)

When an atom or ion is located not in free space, but in a crystal, it is subjected
to various inhomogeneous electric fields which destroy the isotropy of free space. In
particular, the symmetry group is reduced from that of the full three-dimensional rotation
group to some finite group of rotations through finite angles (and perhaps also reflections).

We shall discuss the representation theory of continuous groups (such as the three-
dimensional rotation group) in later sections, but we recall for the moment that the energy
spectrum of electrons in an atom (e.g. the hydrogen atom) are most conveniently described
in terms of spherical harmonics. These are nothing but special families of functions that
transform in irreducible representations of the rotation group. Indeed, as you learned in
quantum mechanics, the set of spherical harmonics

Y l,m(θ, ϕ) , m = −l, . . . , l , (1.8.1)

where l = 0, 1, . . . is fixed, transform under rotations into one another and correspond
to the irreducible representation Dl of the rotation group of dimension 2l + 1. Since
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rotations change the value of m, this in particular implies that the energy spectrum of
a rotationally symmetric problem such as the hydrogen atom can only depend on n (the
additional quantum number characterising the radial behaviour) and l, but not on m. In
fact, as you probably remember, for the case of the hydrogen atom, the energy spectrum
is even independent of l, but this is a sign of an even bigger underlying symmetry that is
associated to the Runge-Lenz vector.

Let us consider the case of an ion in a crystal at a site where it is surrounded by a
regular octahedron of negative ions; this is a reasonable approximation of the real situation
in a large number of instances. The discrete symmetry group that maps the adjacent ions
into one another contains then the octahedral group O, i.e. the group of proper rotations
that take a cube or a octahedron into itself. (The relation between the octahedron and
the cube is that we can embed the octahedron into the cube so that the vertices of the
octahedron sit at the face centers of the cube, while the face centers of the octahedron
are in one-to-one correspondence with the vertices of the cube. Thus we may equivalently
think of O as being the group of rotational symmetries of the cube.)

The rotational symmetries of the cube contain 24 elements: (i) for each of the 4 body
diagonals, there are 2 non-trivial rotations, leading to 8 = 4 · 2 diagonal rotations; (ii) for
each of the three axes through the face centers of opposite faces — we can naturally think
of them as the x, y and z-axis — there are 3 non-trivial rotations, leading to 9 = 3 · 3
x, y, z rotations; (iii) finally for each of the 6 axes through the origin that are parallel to
face diagonals there is one non-trivial 180-degree rotation, leading to 6 = 6 · 1 Altogether,
and including the identity generator, we therefore have a group of 8 + 9 + 6 + 1 = 24
elements, |O| = 24.

In terms of conjugacy classes, there is the conjugacy class of the identity E; the
conjugacy class containing the order 3 rotations along the diagonal C3 — it contains all 8
such elements; the conjugacy class C4 of the order 4 rotations along x, y, z — it contains
all 6 such elements. In addition there are two conjugacy classes of order 2 elements, one
associated to the order 2 rotations along the x, y, z axis — we shall denote it by 3C2 since
it contains 3 elements — and one containing all 6 order two rotations of (iii) — this will
be denoted by 6C2. The character table then has the form given in table 2, where the
different representations have been labelled (following the usual convention in molecular
physics) E, A1, A2, T1 and T2.

1 8 3 6 6
O E C3 3C2 6C2 C4

A1 1 1 1 1 1

A2 1 1 1 -1 -1

E 2 -1 2 0 0

T1 3 0 -1 -1 1

T2 3 0 -1 1 -1

Table 2: Character Table of O
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Note that A1 is the identity representation, and that the different characters are or-
thonormal with respect to the standard inner product on the space of class functions
(1.6.15).

Now consider an electron with angular momentum quantum number L with respect to
the usual 3-dimensional rotation group. The (2L+1) spherical harmonics that describe the
different values for M all have degenerate energy eigenvalues in isotropic space. However,
with respect to the smaller octahedral symmetry group, this irreducible representation
of the rotation group will now not be irreducible, but will rather be a direct sum of
irreducible O-representations. Thus in the presence of the lattice, one should expect that
the (2L+1)-fold degeneracy of the eigenstate will be lifted according to the decomposition
into O-representations. (The states that sit in the same irreducible O-representation
will continue to have degenerate energy eigenvalues, but for those that sit in different
irreducible O-representations this will not generically be the case.) Thus without doing
any real calculation, we can make a qualitative prediction for how the degeneracies will
lift in the presence of the crystal!

In order to understand this more concretely, all we have to do is to understand how
the irreducible DL representation decomposes with respect to the O-action. In fact, given
our results above, it is enough to know the character of the various conjugacy classes of
O in the DL representation. Recall that in the representation DL, a rotation by an angle
α leads to the trace

χL(α) =
L∑

M=−L

eiMα = e−iLα
2L∑
m=0

eimα = e−iLα
1− ei(2L+1)α

1− eiα
(1.8.2)

=
ei(L+ 1

2
)α − e−i(L+ 1

2
)α

ei
α
2 − e−iα2

(1.8.3)

=
sin
(
(L+ 1

2
)α)

sin(α
2
)

. (1.8.4)

Since the different conjugacy classes of O all correspond to rotations we therefore find

χL(E) = 2L+ 1 (1.8.5)

χL(C3) = χL(2π
3

) =
sin
(
(L+ 1

2
)2π

3

)
sin(π

3
)

=


1 L = 0, 3, . . .
0 L = 1, 4, . . .
−1 L = 2, 5, . . .

(1.8.6)

χL(C2) = χL(π) =
sin
(
(L+ 1

2
)π
)

sin(π
2
)

= (−1)L (1.8.7)

χL(C4) = χL(π
2
) =

sin
(
(L+ 1

2
)π

2

)
sin(π

4
)

=

{
1 L = 0, 1, 4, 5, . . .
−1 L = 2, 3, 6, 7, . . . ,

(1.8.8)

where the characters in the two C2 conjugacy classes are the same — the corresponding
rotations are in different conjugacy classes of O, but in the same conjugacy class of the
full rotation group.
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Now we have all the information to determine the decomposition of DL into irreducible
O-representations using (1.6.12). For the first few cases we find explicitly

D0 = A1

D1 = T1 3→ 3
D2 = E ⊕ T2 5→ 2 + 3
D3 = A2 ⊕ T1 ⊕ T2 7→ 1 + 3 + 3
D4 = A1 ⊕ E ⊕ T1 ⊕ T2 9→ 1 + 2 + 3 + 3 ,

(1.8.9)

as one easily verifies by comparing characters. So for example, this implies that the
degeneracy of the 3 states with angular momentum number L = 1 is not lifted by the
crystal, whereas the degeneracy of the 5 states with angular momentum number L = 2 is
lifted into a two-fold and a three-fold degenerate level, etc.

In most crystals there are at least small departures from cubic symmetry at the lattice
site of a magnetic ion. We can take these (smaller) effects into account by considering
now the breaking of the O-representations into representations of the smaller symmetry
group that are still respected by the deformed lattice. For example, let us assume that
the octahedron of ions producing the crystal field is distorted by an elongation along one
of the threefold axes. This reduces the rotational symmetry to the dihedral group D3

that is a subgroup of O. The group D3 consists of 6 elements that sit in three conjugacy
classes: the identity element (that is a conjugacy class by itself); the conjugacy class of
order 3 elements (that contains 2 elements, namely d and d2 in the notation of (1.1.7));
as well as the conjugacy class of order 2 elements (that contains 3 elements, namely s, sd
and sd2, again in the notation of (1.1.7)). Its character table as well as the characters of
the irreducible O representations is given in table 3

1 2 3
D3 E C3 C2

A1 1 1 1

A2 1 1 -1

E 2 -1 0

A1 1 1 1

A2 1 1 -1

E 2 -1 0

T1 3 0 -1

T2 3 0 1

Table 3: Character Table of D3 (upper block). The representations below the double line
refer to the O-representations.
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We conclude from this that we have the branching rules from O to D3 given by

A1 = A1

A2 = A2

E = E
T1 = A2 ⊕ E 3→ 1 + 2
T2 = A1 ⊕ E 3→ 1 + 2 ,

(1.8.10)

i.e. the O-representations A1, A2 and E are irreducible with respect to D3 (where they are
denoted by the same symbol), whereas the two 3-dimensional O-representations T1 and T2

decompose into a direct sum of a 1-dimensional and a 2-dimensional D3 representation.

As a consequence, while the degeneracy of the 3 states with angular momentum num-
ber L = 1 is not lifted by the perfect crystal, a small elongation along one of the threefold
axes will induce a small splitting of 3→ 1+2. Similarly, the 5 states at L = 2 are split by
the perfect crystal into a two-fold and a three-fold degenerate level; the small elongation
will not lift the degeneracy of the two-fold level, but will split the three-fold level further
as 3→ 1 + 2, etc.

This example shows how simple group theoretic methods allow us to gain important
structural insight into the qualitative features of a problem without doing actual detailed
calculations. This is one of the central themes of this course.

1.9 Classification of crystal classes

In the above example we have considered two lattices, the perfect cubic lattice whose
symmetry group (fixing a lattice point) contained the octahedral group O, as well as the
deformed lattice whose symmetry group was the dihedral group D3. One may ask what
other groups may arise as symmetry groups of 3-dimensional lattices, and in fact one can
show that there are only 32 possible symmetry groups. Accordingly, the lattices can be
classified into 32 so-called crystal classes.

While we shall not attempt to prove this classification in detail, we want to under-
stand at least schematically what sorts of groups can arise, and why there are only 32
possibilities. First of all, we are only interested in the point groups of the lattice, i.e.
in the group of lattice symmetries that fix a specific lattice point which we may take to
be the origin. The corresponding group elements can then be thought of as real 3 × 3
matrices. Furthermore, since the angles between the various lattice vectors are preserved,
these 3× 3 matrices must be orthogonal.

The first step of the classification consists of finding all finite subgroups of O(3), the
group of orthogonal 3 × 3 matrices. The relevant subgroups can be classified; they are
either pure rotation groups, i.e. only contain elements in SO(3) with determinant +1, or
contain also some reflections. The possible pure rotation groups are

• the cyclic group Cg of order g, consisting of g proper rotations about a fixed axis;
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• the dihedral group Dh of order 2h consisting of all proper rotations carrying a plane
regular h-sided polygon in space onto itself: these include the h proper rotations
about an axis perpendicular to the plane, together with h proper 180 degree rota-
tions about the symmetry axes in the plane of the polygon;1

• the tetrahedral group T of order 12, consisting of the proper rotations carrying a
regular tetahedron onto itself;

• the octahedral group O or order 24, consisting of the proper rotations carrying a
cube into itself;

• the icosahedral group I of order 60, consisting of the proper rotations carrying a
regular icosahedron into itself. (This group is isomorphic to the alternating group
A5.)

In all of these cases it is also possible to adjoin some reflection symmetries to these
pure rotation groups, but in each case there are at most two ways of doing so. But since
the order of the group elements for the first two classes of groups, Cg and Dh is not yet
constrained, at this stage we still have an infinite list of possible symmetry groups.

To cut this list down to finite size, the following observation is crucial. So far we have
studied the possible finite orthogonal symmetry groups of O(3), but we haven’t yet used
that this must map an actual lattice into itself. For example, in a suitable orthonormal
basis the rotations in Cg or Dh are of the form

R(ϕ) =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 . (1.9.11)

However, if this transformation maps the lattice to itself, it must map each basis vector
of the lattice to a linear combination (with integer coefficients) of lattice basis vectors.
Thus in the lattice basis (that is typically not orthonormal) the matrix R(ϕ) must be
described by a matrix with integer entries. The lattice basis is related, by a change of
coordinates, to the above orthonormal basis, and hence, for example, the trace of the
matrix is independent of which basis is being used. But this then implies that the trace
of R(ϕ) must be an integer since it equals an integer in the lattice basis. On the other
hand, we have explicitly

Tr
(
R(ϕ)

)
= 1 + 2 cosϕ . (1.9.12)

In order for this to be an integer, the possible angles are therefore

ϕ = ±π
3
, ±π

2
, ±2π

3
,±π . (1.9.13)

1From the 2-dimensional viewpoint of the plane containing the polygon, this group also includes the
‘reflection’ s, see (1.1.7), but from the 3-dimensional viewpoint that is relevant here, this reflection is
described by a 180 degree rotation about an axis in the plane of the polygon.
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Thus we conclude that the possible orders of rotations are 1, 2, 3, 4 or 6, and thus the
possible groups Cg and Dh that can appear have

h, g ∈ {1, 2, 3, 4, 6} . (1.9.14)

It is then clear that the complete list of symmetry groups is finite, and a detailed analysis
leads to the 32 cases mentioned before. (A more comprehensive discussion may be found
in [FS, Chapter 8.2 & 8.3] or [T, Chapter 4.2].)
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2 The symmetric group and Young diagrams

For some aspects of Lie theory (that will form the center of attention of the second
half of this course) the symmetric group plays an important role. We therefore want to
understand its representation theory in some detail.

2.1 Conjugacy classes and Young diagrams

Recall that Sn is the group of 1-to-1 transformations of the set {1, . . . , n}. As we have
seen before, each element of Sn may be described in terms of cycles, describing the orbits
of the different elements of {1, . . . , n}. It is not difficult to see that the conjugacy classes
of Sn are then labelled by the cycle shapes, i.e. by the specification of how many cycles of
which length the permutation has. For example, for the permutation described in (1.1.4),
we have

(1324)(5)(67) ←→ cycle shape 11 21 41, (2.1.1)

i.e. there is one cycle of length 1, 2 and 4 each. We shall denote the conjugacy classes by
Ci, where i is a multiindex

i = (i1, i2 . . . , in) , (2.1.2)

with ij denoting the number of cycles of length j. So for the above example we have
i = (1, 1, 0, 1, 0, 0, 0). Note that we have the identity

n =
n∑
j=1

j ij , (2.1.3)

i.e. the cycle shapes define a partition of n into positive integers. The number of conjugacy
classes of Sn is therefore equal to the number of partitions p(n) of n. Its generating
function equals

∞∑
n=0

p(n) tn =
∞∏
m=1

1

1− tm

= (1 + t+ t2 + t3 + · · · )(1 + t2 + t4 + · · · )(1 + t3 + t6 + t9 + · · · ) · · ·
= 1 + t+ 2t2 + 3t3 + 5t4 + 7t5 + · · · , (2.1.4)

i.e. S2 has 2 conjugacy classes, S3 has 3 conjugacy classes, etc. (This last statement
is obviously in agreement with what we saw explicitly above, see table 1.) The above
generating function has interesting arithmetic properties and has been carefully studied;
for example, the partition numbers grow asymptotically as

p(n) ∼ eπ
√

2n
3 . (2.1.5)

We can describe partitions in terms of Young diagrams (sometimes also called Young
frames). Suppose λ = (λ1, . . . , λk) is a partition of n, i.e. n = λ1 +λ2 + · · ·+λk. Without

24



loss of generality we may order the λi as λ1 ≥ · · · ≥ λk. For example, for n = 10 with
λ1 = λ2 = 3, λ3 = 2, λ4 = λ5 = 1, the corresponding Young frame has the form

(2.1.6)

i.e. there are λ1 boxes in the first row, λ2 in the second, etc., with the rows of boxes lined
up on the left. The conjugate partition λ′ = (λ′1, λ

′
2, . . . , λ

′
r) is defined by interchanging

the rows and columns in the Young diagram, i.e. by reflecting the diagram along the 45
degree line. For example, for the diagram above, the conjugate partition is λ′ = (5, 3, 2)
with Young diagram

(2.1.7)

If we want to define the conjugate partition without reference to the diagram, we can
define λ′i as the number of terms in the partition λ that are greater or equal than i.

The purpose of writing a Young diagram instead of just the partition, of course, is to
put something in the boxes. Any way of putting a positive integer in each box of a Young
diagram is called a filling. A Young tableau is a filling (by positive integers) such that the
entries are

(1) weakly increasing (i.e. allowing for equalities as well) across each row from left to
right

(2) strictly increasing (i.e. without equalities) down each column

We call a Young tableau standard if the entries are the numbers {1, . . . , n}, each occuring
once. For example, for the Young diagram (2.1.6), two standard Young tableaux are

1 2 3
4 5 9
6 7
8
10

1 3 7
2 4 10
5 6
8
9 (2.1.8)

Young diagrams can be used to describe projection operators for the regular repre-
sentation of Sn, which will then give rise to the irreducible representations of Sn. Given
a standard tableau, say the one shown to the left above, define two subgroups of the
symmetric group2

P = Pλ = {σ ∈ Sn : σ preserves each row} (2.1.9)

2If a tableau other than the canonical one were chosen, one would get different groups in place of P
and Q and different elements in the group algebra, but the representations constructed this way will be
isomorphic. We will come back to this point below.
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and
Q = Qλ = {σ ∈ Sn : σ preserves each column} . (2.1.10)

In the group algebra CG we introduce two elements corresponding to these subgroups by
defining

aλ =
∑
σ∈P

eσ , bλ =
∑
σ∈Q

sgn(σ) eσ , (2.1.11)

where sgn(σ) is the parity of the permutation σ. To see what aλ and bλ do, suppose that
V is any vector space. Then Sn acts on the n’th tensor power V ⊗n by permuting the
factors, and the image of the element aλ ∈ CSn under the map aλ ∈ CSn → End(V ⊗n) is
just the subspace

Im(aλ) =
(
Symλ1V

)
⊗
(
Symλ2V

)
⊗ · · · ⊗

(
SymλkV

)
⊂ V ⊗n , (2.1.12)

where the inclusion on the right is obtained by grouping the factors of V ⊗n according to
the rows of the Young tableaux. Similarly, the image of bλ on this tensor power is

Im(bλ) =
(
∧µ1V

)
⊗
(
∧µ2V

)
⊗ · · · ⊗

(
∧µrV

)
⊂ V ⊗n , (2.1.13)

where µ is the conjugate partition to λ, and ∧µV is the totally antisymmetric subspace
of the tensor product V ⊗µ.

Finally we define the Young symmetriser associated to λ by

cλ = aλ · bλ ∈ CSn . (2.1.14)

For example, if λ is the Young diagram , bλ = ee and thus cλ = aλ. Then
the image of cλ on V ⊗n is SymnV . Conversely, if λ is the Young diagram

λ = (2.1.15)

then aλ = ee and thus cλ = bλ. Then the image of cλ on V ⊗n is ∧nV . We will eventually see
that the image of the symmetrisers cλ on V ⊗n provide essentially all the finite-dimensional
irreducible representations of GL(V ).

What is important for us in the present context is that we can also obtain all irreducible
representations of Sn in this manner. Concretely, one has the following Theorem (which
we shall however not prove in the lecture, for a proof see e.g. [FH] chapter 4.2):

Theorem: Some scalar multiple of cλ is idempotent, i.e., c2
λ = nλcλ, where nλ ∈ R,

and the image of cλ by right-multiplication on the group algebra CG is an irreducible
representation Vλ of Sn. The representations corresponding to the different diagrams λ
are inequivalent, and hence all irreducible representations can be obtained in this manner.
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Note that this construction therefore establishes a direct correspondence between con-
jugacy classes in Sn and irreducible representations of Sn, something which is not available
for general groups. Instead of proving the Theorem we shall illustrate it with a few ex-
amples. For example, for the Young diagram λ =

V = CS5 ·
∑
σ∈S5

eσ = C ·
∑
σ∈S5

eσ (2.1.16)

is the trivial representation, since for any τ ∈ S5

τ ·
∑
σ∈S5

eσ =
∑
σ∈S5

eτσ =
∑
σ∈S5

eσ . (2.1.17)

Thus each permutation acts trivially on the element
∑

σ eσ. Conversely, (2.1.15) corre-
sponds to

V = CS5 ·
∑
σ∈S5

sgn(σ) eσ = C ·
∑
σ∈S5

sgn(σ) eσ , (2.1.18)

which defines the alternating representation since now, for any τ ∈ S5,

τ ·
∑
σ∈S5

sgn(σ) eσ =
∑
σ∈S5

sgn(σ) eτσ =
∑
σ′∈S5

sgn(τ−1σ′) eσ′ = sgn(τ)
∑
σ′∈S5

sgn(σ′) e′σ ,

(2.1.19)
where we have set σ′ = τσ in the middle step. For λ = with the canonical numbering,
i.e., for

1 2
3 (2.1.20)

we have

c = (ee + e(12))(ee − e(13)) = ee + e(12) − e(13) − e(132) ∈ CSn . (2.1.21)

Then V is spanned by f̃1 ≡ c and f̃2 ≡ (13) · c , so V is in fact the standard

representation V of S3. Indeed, using (13)(12) = (123) and (13)(132) = (23), we find

f̃2 = e(13) + e(123) − ee − e(23) , (2.1.22)

and then we have, with (12)(13) = (132), (12)(132) = (13), etc.

(12) · f̃1 = f̃1 , (23) · f̃1 = e(23) + e(132) − e(123) − e(12) = −(f̃1 + f̃2) (2.1.23)

and

(12) · f̃2 = e(23) + e(132) − e(123) − e(12) = −(f̃1 + f̃2) , (23) · f̃2 = f̃2 , (2.1.24)
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thus reproducing, up to an overall sign, precisely (1.3.13). The overall sign can be undone
by going to a different basis, i.e. by defining

f1 = f̃1 + 2f̃2 , f2 = −2f̃1 − f̃2 . (2.1.25)

In terms of this basis we then have

(12) f1 = −f1 , (23) f1 = f1 + f2

(12) f2 = f1 + f2 , (23) f2 = −f2 ,
(2.1.26)

in complete agreement with (1.3.13).
It is also instructive to see what happens if we use the other allowed standard filling

for the Young diagram, i.e.
1 3
2 (2.1.27)

Then the corresponding ĉλ equals

ĉ = (ee + e(13))(ee − e(12)) = ee + e(13) − e(12) − e(123) ∈ CSn , (2.1.28)

and the corresponding basis vectors can be taken to be

f̂1 = ĉλ = ee+e(13)−e(12)−e(123) f̂2 = (23) · ĉλ = e(23) +e(123)−e(132)−e(13) , (2.1.29)

on which we have the actions

(12) · f̂1 = −(f̂1 + f̂2) , (23) · f̂1 = f̂2 , (2.1.30)

as well as
(12) · f̂2 = f̂2 , (23) · f̂2 = f̂1 , (2.1.31)

Then we get the standard form of the representation by defining

f1 = 2f̂1 + f̂2 , f2 = f̂2 − f̂1 . (2.1.32)

Thus, in particular, cλ and ĉλ define equivalent representations, cf. footnote 2.

2.2 Frobenius formula

Next we want to describe an elegant formula for the character of the irreducible rep-
resentation corresponding to the Young diagram λ. Let us introduce independent vari-
ables x1, . . . , xk, with k at least as large as the number of rows of the Young diagram
of λ. We want to evaluate the character on the conjugacy class labelled by Ci with
i = (i1, i2, . . . , in), where ij is the number of cycles of length j.

Let us define the power sums Pj(x) for 1 ≤ j ≤ n, and the discriminant ∆(x) by

Pj(x) = xj1 + xj2 + · · ·+ xjk (2.2.1)

∆(x) =
∏
i<j

(xi − xj) . (2.2.2)
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If f(x) = f(x1, . . . , xk) is a formal power series, and (l1, . . . , lk) is a k-tuple of non-negative
integers, let us denote the corresponding Fourier coefficient by

[f(x)](l1,...,lk) = coefficient of xl11 · · ·x
lk
k in f(x) . (2.2.3)

Given a partition λ of n with λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, we define a strictly decreasing
sequence of k non-negative integers by

lj = λj + k − j , (2.2.4)

i.e. l1 = λ1 + k− 1 > l2 = λ2 + k− 2, . . ., finally leading to lk = λk ≥ 0. The character of
the irreducible representation associated to λ evaluated on the conjugacy class Ci is now
given by the remarkable formula

χλ(Ci) =
[
∆(x) ·

n∏
j=1

Pj(x)ij
]

(l1,...,lk)
. (2.2.5)

This is the famous Frobenius formula.

We shall not prove this formula in this lecture; a proof can, for example, be found in
[FH], section 4.3. However, let us illustrate it with some simple examples. For example, for
the case of S3, the standard (2-dimensional) representation is described by the partition
λ1 = 2, λ2 = 1 with k = 2. Then the corresponding l-values are l1 = 3, l2 = 1, and for
the character of the conjugacy class containing the identity, i.e. i = (3, 0, 0), we get

χ (e) =
[
(x1 − x2)(x1 + x2)3

]
(3,1)

= 2 , (2.2.6)

in agreeement with the dimension of the standard representation. Similarly, for the con-
jugacy class containing the transpositions, say (12) — this corresponds to i = (1, 1, 0) —
we have instead

χ
(
(12)

)
=
[
(x1 − x2)(x1 + x2)(x2

1 + x2
2)
]

(3,1)
=
[
x4

1 − x4
2

]
(3,1)

= 0 , (2.2.7)

and for the conjugacy class containing the cyclic permutation (123), i.e. i = (0, 0, 1) we
have

χ
(
(123)

)
=
[
(x1 − x2)(x3

1 + x3
2)
]

(3,1)
= −1 . (2.2.8)

These results then reproduce exactly the entries of the character table, see Table 1.

Let us use the Frobenius formula to compute the dimension of the irreducible repre-
sentation Vλ associated to λ. The conjugacy class of the identity always corresponds to
i = (n), so that we have the formula

dim(Vλ) = χλ
(
(n)
)

=
[
∆(x) · (x1 + · · ·+ xk)

n
]

(l1,...,lk)
. (2.2.9)
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The discriminant equals the Vandermonde determinant

∆(x) =

∣∣∣∣∣∣∣
1 xk · · · xk−1

k
...

...
...

1 x1 · · · xk−1
1

∣∣∣∣∣∣∣ =
∑
σ∈Sk

(sgnσ)x
σ(1)−1
k · · ·xσ(k)−1

1 . (2.2.10)

The other term equals

(x1 + · · ·+ xk)
n =

∑
r1,...,rk

n!

r1! · · · rk!
xr11 xr22 · · ·x

rk
k , (2.2.11)

where the sum runs over all k-tuples (r1, . . . , rk) such that
∑

j rj = n. To find the

coefficient of xl11 · · · x
lk
k in the product, we pick, for each σ ∈ Sk, the relevant term from

the second expression, i.e. we get

dim(Vλ) =
∑
σ∈Sk

(sgnσ)
n!

(l1 − σ(k) + 1)! · · · (li − σ(k − i+ 1) + 1)! · · · (lk − σ(1) + 1)!
,

(2.2.12)
where the sum only runs over those σ for which lk−i+1 − σ(i) + 1 ≥ 0 for all 1 ≤ i ≤ k.

Note that both (2.2.10) and (2.2.11) are homogeneous polynomials of degree k(k−1)
2

and
n, respectively, and their product therefore has degree

d =
k(k − 1)

2
+ n =

k∑
i=1

li . (2.2.13)

Thus the only condition we have to worry about is whether the ri are all non-negative,
which is precisely the condition lk−i+1 − σ(i) + 1 ≥ 0.

Next we observe that we can rewrite (2.2.12) as

dim(Vλ) =
n!

l1! · · · lk!
∑
σ∈Sk

(sgnσ)
k∏
j=1

lj (lj − 1) · · · (lj − σ(k − j + 1) + 2)

=
n!

l1! · · · lk!

∣∣∣∣∣∣∣
1 lk lk(lk − 1) · · ·
...

...
...

...
1 l1 l1(l1 − 1) · · ·

∣∣∣∣∣∣∣ . (2.2.14)

By column reduction this determinant reduces to the Vandermonde determinant, so we
get finally

dim(Vλ) =
n!

l1! · · · lk!
∏
i<j

(li − lj) , (2.2.15)

where li = λi + k − i for i = 1, . . . , k.
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For example, for the trivial representation we have λ1 = n with k = 1, and hence
l1 = n. Then (2.2.15) becomes

dim(V(n)) =
n!

n!
= 1 , (2.2.16)

as expected. Similarly, for the alternating representation with have λ1 = · · · = λn = 1
with k = n. Then li = n+ 1− i, and hence (2.2.15) becomes

dim(V(1···1)) = n!
n∏
j=1

1

j!

∏
i<j

(j − i) = 1 , (2.2.17)

again as expected. Here the last product term equals

∏
i<j

(j − i) = (n− 1) (n− 2)2 · · · 2n−2 1n−1 =
n−1∏
j=1

j! . (2.2.18)

There is another useful way of expressing the dimension of the Vλ representation, the
so-called hook formula. We define the hook length of a box in a Young diagram to be
the number of squares directly below or directly to the right of the box, including the box
once. So if we denote by ri and cj the row and column lengths, then the hook length of
the box at position (i, j) equals

h(i, j) = ri + cj − (i+ j − 1) . (2.2.19)

If we label each box of the Young diagram by its hook length, we get for example

9 8 7 5 4 1
7 6 5 3 2
6 5 4 2 1
3 2 1 (2.2.20)

Then the dimension of the representation associated to λ equals

dim(Vλ) = n!
∏

(i,j)∈λ

1

h(i, j)
, (2.2.21)

where the product runs over all boxes of the Young diagram λ. So for the example above
(2.2.20) — this describes a representation of S19 — we get

dim
(
V(6,5,5,3)

)
=

19!

9 · 8 · 7 · 5 · 4 · 1 · 7 · 6 · 5 · 3 · 2 · 6 · 5 · 4 · 2 · 1 · 3 · 2 · 1
= 19 · 17 · 16 · 13 · 11 · 9 = 6′651′216 . (2.2.22)
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Note that for the trivial and alternating representations, the hook lengths are (for the
case of S5)

5 4 3 2 1 and

5
4
3
2
1 (2.2.23)

and thus the hook length formula gives indeed in each case again 1. On the other hand,
for the regular representation of S3 we get

3 1
1 (2.2.24)

and hence we produce

dim(Vreg) =
3!

3 · 1 · 1
= 2 . (2.2.25)

We remark that it is immediate from the hook length formula that the dimension of the
representation associated to the Young diagram λ and the conjugate Young diagram, λ′,
is the same.

Finally, there is another way of describing the dimension of the representation corre-
sponding to λ: it is the number of standard Young tableaux with shape λ. This is to say,
it is the number of fillings of the Young diagram λ by the integers {1, . . . , n} such that
the entries increase across each row and down each column. Again, for the trivial and
alternating representation there is obvioulsy only one standard Young tableau, while for
the regular representation of S3 there are two — these are the two fillings

1 2
3 and

1 3
2 (2.2.26)

thus reflecting that the corresponding dimension is indeed dim(Vreg) = 2.

2.3 Equivalent particles

As an application of these ideas let us consider a (quantum mechanical) system of n
equivalent particles. [Here by the term ‘equivalent’ we mean that the Hamiltonian of
the system is invariant under the interchange of the coordinates of all of these particles.]
Suppose ψ(x1, . . . , xn) is an eigenfunction of the Hamiltonian, then any of the n! permu-
tations applied to ψ(x1, . . . , xn) will also define an eigenfunction (with the same energy
eigenvalue).

If the particles are indistinguishable bosons or indistinguishable fermions, then we
know that the relevant physical wave function is the totally symmetric or totally anti-
symmetric wave-function, i.e. the wave-function we obtain from ψ(x1, . . . , xn) upon sum-
ming over all permutations as

Ψε(x1, . . . , xn) =
∑
σ∈Sn

(sgn(σ))ε ψ(xσ(1), . . . , xσ(n)) , (2.3.27)
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where ε = 0 corresponds to the bosonic and ε = 1 to the fermionic case.
Obviously, these two cases correspond precisely to the two 1-dimensional representa-

tions of the symmetric group, the trivial and the alternating representation. However,
as we have seen above, the symmetric group also has other irreducible representations,
and we may contemplate the idea that our particles are neither bosons nor fermions, but
transform in one of these other irreducible representations of the symmetric group. In this
case one says that the particles obey parastatistics. While it is now believed that, at least
in 3 + 1 spacetime dimensions, all fundamental particles are either bosons or fermions —
for the lower-dimensional case, there are exceptions having to do with the braid group,
see section 2.4 — parastatistics may very well occur for quasiparticles that appear in some
effective description.

With the technology we have developed above, it is now easy to find a suitable ba-
sis for the wave-functions that transforms in a specific irreducible representation of the
permutation group. To this end we simply apply the Young symmetriser cλ to the wave-
function — recall that the Young symmetriser, defined in eq. (2.1.14), is an element of
the group algebra, and hence it makes perfect sense to apply it to the wave-function as
above. In particular, we recover the totally symmetric or totally antisymmetric wave-
function for the trivial and the alternating representation, respectively, see eqs. (2.1.16)
and eqs. (2.1.18).

There is only one point that requires further comment: the way we introduced the
Young symmetriser in eq. (2.1.14), it was associated to a Young diagram, but as is implicit
from the construction there, it is actually associated to a standard Young tableau, i.e. to
a Young diagram together with a choice of a standard filling. Now, as we have mentioned
at the end of the previous section, the number of standard fillings is actually equal to the
dimension of the corresponding representation of the symmetric group. And furthermore,
since there are n! = |Sn| different orderings for the variables (x1, . . . , xn), among the n!
functions, a given irreducible representation R of the symmetric group will appear dim(R)
times — this is just the identity

n! = |Sn| =
∑
i

dim(Ri)
2 , (2.3.28)

where the sum runs over all irreducible representations of Sn.
So now it should be clear how to choose a suitable basis of functions: for each standard

Young tableau we apply the corresponding Young symmetriser to the wave-function, and
each of the resulting wave-functions will generate (upon the action of the symmetric group
from the left) an irreducible representation of the symmetric group.

So for example, for the case of 3 particles, we have in addition to the totally symmetric
and totally antisymmetric wave-function, the two wave-functions associated to the 2-
dimensional regular representation with Young diagram ; if we use the ‘canonical’
standard filling we get, see eq. (2.1.21),

Ψ(1) = ψ(x1, x2, x3) + ψ(x2, x1, x3)− ψ(x3, x2, x1)− ψ(x3, x1, x2) (2.3.29)
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while for the other standard filling, see eq. (2.1.28), we get instead

Ψ(2) = ψ(x1, x2, x3) + ψ(x3, x2, x1)− ψ(x2, x1, x3)− ψ(x2, x3, x1) . (2.3.30)

Each of these functions generates a 2-dimensional representation of the symmetric group;
for example, applying the (23) permutation to Ψ(1) we obtain

Ψ(1)′ = ψ(x1, x3, x2) + ψ(x3, x1, x2)− ψ(x2, x3, x1)− ψ(x2, x1, x3) (2.3.31)

while applying the (23) permutation to Ψ(2) leads to

Ψ(2)′ = ψ(x1, x3, x2) + ψ(x2, x3, x1)− ψ(x3, x1, x2)− ψ(x3, x2, x1) . (2.3.32)

The space of functions generated by Ψ(1) and Ψ(1)′ forms an irreducible representation of
the symmetric group, where the permutations act on the left via

(σ ·Ψ) (x1, x2, x3) = Ψ(xσ(1), xσ(2), xσ(3)) . (2.3.33)

For example,

((13) ·Ψ(1)) (x1, x2, x3) = ψ(x3, x2, x1) + ψ(x2, x3, x1)− ψ(x1, x2, x3)− ψ(x1, x3, x2)

= −Ψ(1)(x1, x2, x3)−Ψ(1)′(x1, x2, x3) , (2.3.34)

etc. Similarly, the space of functions generated by Ψ(2) and Ψ(2)′ also forms an irreducible
representation of the symmetric group (that is equivalent to the above). Furthermore,
these 4 functions, together with the totally symmetric and totally antisymmetric wave-
functions, span the full 6-dimensional space of all wave-functions. (We are assuming here
that the initial wave-function is sufficiently generic — obviously, it may be that some of
these linear combinations vanish identically, e.g. if the wave-function ψ(x1, . . . xn) is of a
simple product form, say ψ(x1, . . . , xn) = χ(x1) · · ·χ(xn), all but the totally symmetric
wave-function will vanish.)

2.4 Braid group statistics

As was alluded to above, the symmetric group is only expected to characterise the be-
haviour of identical particles in 3 + 1 dimensions, but more general possibilities appear in
lower dimensions. One way to motivate this is to consider the classical configuration space
of identical particles. Suppose we have n identical particles moving in d space-dimensions,
then the classical configuration space is

Md,n =
({

(x1, . . . ,xn) : xj ∈ Rd
}
− {(x1, . . . ,xn) : xi = xj for some i 6= j}

)
/Sn ,

(2.4.35)
where the symmetric group acts in the obvious manner, i.e. for σ ∈ Sn the action is

σ(x1, . . . ,xn) = (xσ(1), . . . ,xσ(n)) . (2.4.36)
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(Note that we have to remove the configurations where two points coincide in order to
have a fixed-point free action of Sn.)

At each moment in time, the system of n identical particles is described by a single
point inMd,n, and thus, as a function of time, the whole system is described by a curve in
the configuration space Md,n. Now suppose that, after some time T , the system returns
to the same point X in the configuration space, i.e. to a configuration where the n points
are at the same positions (but may have interchanged places). If we can deform (within
the configuration space) this curve to the curve where the system was at the position X
all along, then we would expect the wave-function to be identically the same as before.
However, if the two curves — the actual time evolution of the system and the constant
curve — cannot be deformed into one another, the two wave-functions may differ, e.g. by
a phase.

Obviously, a necessary condition for the curve to be ‘trivial’ in this sense is that the
particles haven’t changed position. For d ≥ 3 this is also a sufficient condition, but this is
not true in lower dimensions. More precisely, the question of which curves are deformable
into one another is precisely what homotopy theory describes, and the relevant homotopy
group is, for d ≥ 3, simply described by the permutation group

π1(Md,n) = Sn . (2.4.37)

Thus, for d ≥ 3, the ‘statistics’ of particles is characterised by a representation of the
symmetric group.

However, for d = 2 something more interesting happens. Consider n points in the
plane (d = 2), which we take to be the x− y plane, and draw their time-evolution along
the z-axis. Then the time evolution of the whole system is described by a configuration
of threads, one for each of the n identical particles. Suppose that after time T , the
first two particles have interchanged position (while the others have been far away and
fixed). Now there are two ways in which this can happen, depending on which way the
two particles have gone round each other. A more formal way of saying this is that the
relevant homotopy group is, for d = 2,

π1(M2,n) = Bn (2.4.38)

the braid group. Thus ‘particles’ in d = 2 are characterised not by a representation of the
symmetric group, but rather by a representation of the braid group.

The braid group has infinite order (and is hence much more complicated than the
symmetric group), but it has a very simple description in terms of generators and relations.
In order to motivate this, recall that we may describe the symmetric group to be generated
by the elements σi ≡ (i i+ 1), i = 1, . . . n− 1, subject to the relations

σ2
i = e , σiσj = σjσi if |i− j| ≥ 2 , (2.4.39)

as well as
σiσi+1σi = σi+1σiσi+1 , i = 1, . . . , n− 2 . (2.4.40)
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Now the braid group has a very similar presentation: it is generated by the elements bi,
i = 1, . . . , n− 1, describing the clockwise interchange of threads i and i+ 1. The relevant
relations are the same as those for the permutation group, except that the first relation
is missing

bibj = bjbi if |i− j| ≥ 2 , bibi+1bi = bi+1bibi+1 , i = 1, . . . , n− 2 . (2.4.41)

It is not hard to see that these relations are true for geometric braids (and that b2
i isn’t the

identity.) As a consequence the braid group has infinite order. Another nice consequence
of this is that there are not just two 1-dimensional representations of the braid group, but
rather a whole continuum of them. Indeed the assignment

bi = eiθ (2.4.42)

defines a representation of the braid group for any value of θ. Note that the two values
θ = 0 and θ = π correspond to the trivial and alternating representation of the symmetric
group — these are the only values for which b2

i = 1 — but that for the braid group any
phase θ is allowed. Thus in 2 dimensions there are not just bosons and fermions, but also
anyons. It is believed that anyonic statistics characterises certain quasiparticles in the
quantum Hall effect (which is effectively a 2-dimensional system).

In the recent past also particles that have non-abelian braid group statistics, i.e. that
transform in a higher dimensional irreducible representation of the braid group and hence
exhibit the analogue of parastatistics, have attracted a lot of attention. In particular,
particles with this property would allow one to construct what is called a ‘topological
quantum computer’. There is some chance that the ν = 5

2
state in the fractional quantum

Hall effect may be described by such a quasiparticle.

36



3 Lie groups and Lie algebras

In the second half of this lecture course we shall explain the basics of Lie theory. Lie
groups are groups that are at the same time differentiable manifolds such that the group
operations (i.e. the group multiplication as well as the map that sends a group element to
its inverse) are smooth — typical examples are the matrix groups SO(n) or SU(n), etc.
Thus Lie groups seem to stand at the opposite end of the spectrum of groups from finite
ones. In particular, they are of uncountable order, and for example it is impossible to
define them in terms of generators and relations. As such they seem enormously compli-
cated. However, because of the additional data of a manifold structure, it is nevertheless
possible to study them quite easily in detail.

Lie groups represent a confluence of algebra and geometry, which accounts perhaps in
part for their importance in modern mathematics; it also makes their analysis somewhat
intimidating. Happily, because the algebra and the geometry of a Lie group are closely
entwined, there is an object we can use to approach the study of Lie groups that extracts
much of the structure of a Lie group (primarily its algebraic structure) while seemingly
getting rid of the topological complexity. This is, of course, the Lie algebra. The Lie
algebra is, at least according to its definition, a purely algebraic object, consisting simply
of a vector space with a bilinear operation; and so it might appear that in associating to
a Lie group its Lie algebra we are necessarily giving up a lot of information about the
group. This is, in fact, not the case: as we shall see in many cases (and perhaps all of
the most important ones), encoded in the algebraic structure of a Lie algebra is almost
all the geometry of the group. In particular, there is a very close relationship between
representations of the Lie group we start with, and representations of the Lie algebra we
associate to it.

3.1 From the Lie group to the Lie algebra

Let G be a Lie group. We consider the set of curves R(t), where t is a real parameter
t ∈ (−a, a) for some a ∈ R+, and each R(t) ∈ G. Let us assume that R(0) = e, the
identity element of the group G. The tangent space of the identity contains then the
derivatives

Ω =
d

dt
R(t)

∣∣∣∣
t=0

. (3.1.1)

[If G is a matrix group, then R(t) is a matrix for each t ∈ (−a, a); then the derivative
is just the matrix consisting of the derivatives of each matrix element separately. In the
general case of an abstract Lie group, the derivative can also be defined — this can be
done for any map between differentiable manifolds — but for our purposes it will be
sufficient to think of the derivative for the case of matrix groups.]

The set of all derivatives of the above class of curves defines a real vector space since

α1Ω1 + α2Ω2 =
d

dt
R1(α1t)R2(α2t)

∣∣∣
t=0

, (3.1.2)
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for α1, α2 ∈ R. This is the vector space underlying the Lie algebra, and we shall denote
it by g. We shall use the convention that Lie groups will be denoted by capital letters,
while the associated Lie algebras are denoted by the corresponding lower case letter (in
mathfrak font.)

The Lie algebra g carries a representation of the Lie group G, since for any R ∈ G,
we have the action

RΩ2R
−1 =

d

dt
RR2(t)R−1

∣∣∣
t=0

, (3.1.3)

where Ω2 = d
dt
R2(t)

∣∣
t=0
∈ g. Since g is a vector space, it then follows that also

[Ω1,Ω2] ≡ d

dt
R1(t)Ω2R1(t)−1

∣∣∣
t=0
∈ g , (3.1.4)

where Ω1 = d
dt
R1(t)

∣∣
t=0

. Thus the Lie algebra g is not just a vector space, but also
possesses a bilinear product, the Lie bracket [·, ·]. If we think of G as a matrix group,
then we can use the product rule to rewrite the commutator as

[Ω1,Ω2] = Ω1 Ω2 − Ω2 Ω1 , (3.1.5)

where we have used that R1(0) = e, as well as

0 =
d

dt

(
R1(t)R1(t)−1

)∣∣∣
t=0

= Ω1 +
d

dt

(
R1(t)−1

)∣∣∣
t=0

=⇒ d

dt

(
R1(t)−1

)∣∣∣
t=0

= −Ω1 .

(3.1.6)
Thus the commutator of two Lie algebra generators is indeed the ‘commutator’; in par-
ticular it is anti-symmetric,

[Ω1,Ω2] = −[Ω2,Ω1] , (3.1.7)

and it satisfies the Jacobi identity[
Ω1, [Ω2,Ω3]

]
+
[
Ω2, [Ω3,Ω1]

]
+
[
Ω3, [Ω1,Ω2]

]
= 0 , (3.1.8)

as follows directly by plugging in (3.1.5).

As an example, let us consider the group G ≡ SO(3), i.e. the group of real orthogonal
3× 3 matrices. Since each group element R ∈ G is orthogonal, RT ·R = e, it follows that

0 =
d

dt

(
R(t)T R(t)

)∣∣∣
t=0

= ΩT + Ω =⇒ ΩT = −Ω , (3.1.9)

i.e. the corresponding Lie algebra so(3) consists of the real anti-symmetric 3×3 matrices.
Every such matrix is of the form

Ω(~ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (3.1.10)
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and thus a basis for the corresponding vector space is given by Ωi = Ω(ei), i = 1, 2, 3.
One easily calculates that the Lie bracket has the form

[Ω1,Ω2] = Ω3 (plus cyclic.) (3.1.11)

In particular, the commutator of two Lie algebra elements in so(3) is again an element of
the Lie algebra so(3).

Up to now we have explained how to obtain the Lie algebra associated to a Lie group.
However, as we have mentioned before, the Lie algebra encodes much of the structure of
the Lie group. Indeed, we can associate to every element of the Lie algebra an element
of the Lie group by the exponential map, that can (again for matrix groups) be explicitly
defined by

exp : g→ G , Ω 7→ eΩ = 1 + Ω +
Ω2

2!
+

Ω3

3!
+ · · · . (3.1.12)

Here the products in the definition of the exponential map are just the usual matrix
products, and it is clear that the infinite sum converges. The result is an invertible
matrix since e−Ω is the inverse matrix to eΩ. Furthermore, Ω is the Lie algebra element
associated to the curve R(t) = etΩ. Finally, the product structure of the Lie group can
be reconstructed from the Lie algebra since we have

exp(Ω1) · exp(Ω2) = exp(Ω1 ? Ω2) , (3.1.13)

where Ω1 ? Ω2 is determined by the Baker-Campbell-Hausdorff formula (Exercise)

Ω1 ? Ω2 = Ω1 + Ω2 + 1
2
[Ω1,Ω2] + 1

12
[Ω1, [Ω1,Ω2]] + 1

12
[Ω2, [Ω2,Ω1]] + · · · . (3.1.14)

Because of the exponential map, much of the structure of the Lie group is captured by
the Lie algebra, and instead of studying representations of the Lie group, we may analyse
representations of the Lie algebra. This simplifies things enormously since the Lie algebra
is a linear vector space (whereas the Lie group is in general a curved manifold).

3.1.1 Representations

We have already learned what a representation of a (finite) group is: it is a map ρ from
the group G to the endomorphisms of some vector space V such that

ρ(g1 · g2) = ρ(g1) ◦ ρ(g2) , ρ(e) = 1 , (3.1.15)

where ◦ denots the composition of endomorphisms, and 1 is the identity map on V . This
definition applies equally well to Lie groups. Again, we shall only study finite-dimensional
representations of the Lie group G, i.e. we shall take V to be a finite-dimensional vector
space.

Given a representation of the Lie group, it induces a map from the Lie algebra g to
the endomorphisms of V as well. Indeed, we simply define

ρ(Ω) =
d

dt
ρ(R(t))

∣∣∣∣
t=0

, (3.1.16)
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where Ω = d
dt
R(t)

∣∣
t=0

. It then follows from (3.1.4) that

ρ ([Ω1,Ω2]) =
d

dt
ρ(R1(t)) ρ(Ω2) ρ(R1(t)−1)

∣∣∣
t=0

= [ρ(Ω1), ρ(Ω2)] . (3.1.17)

Thus we shall call a representation of the Lie algebra g a map ρ from g to the
endomorphisms of V , ρ : g→ End(V ), such that

ρ ([Ω1,Ω2]) = [ρ(Ω1), ρ(Ω2)] . (3.1.18)

With this definition any representation of a Lie group G gives rise to representation of
the associated Lie algebra g.

Every Lie algebra g possesses the adjoint representation, where the underlying vector
space is g itself, and the Lie algebra action ρ is defined via

ρ(t1) (t2) := [t1, t2] . (3.1.19)

This satisfies the defining property of a Lie algebra representation because of the Jacobi
identity,

ρ ([t1, t2]) (t3) =
[
[t1, t2], t3

]
=
[
t1, [t2, t3]

]
−
[
t2, [t1, t3]

]
=
[
ρ(t1), ρ(t2)

]
(t3) , (3.1.20)

where we have used the Jacobi identity in the second step

0 =
[
[t1, t2], t3

]
+
[
[t2, t3], t1

]
+
[
[t3, t1], t2

]
=
[
[t1, t2], t3

]
−
[
t1, [t2, t3]

]
+
[
t2, [t1, t3]

]
.

(3.1.21)
Note that this is just the Lie algebra version of the group representation (3.1.3).

In the following we shall mainly concentrate on the Lie algebra g and its representa-
tions; as we shall see later, we can effectively reconstruct the representations of G uniquely
from those of g.

3.2 Lie algebras

Let g be the Lie algebra of a Lie group G. We introduce a basis for the vector space
underlying g to consist of the vectors tα, where α = 1, . . . , dim(g). Then we can write the
commutators as

[tα, tβ] = fαβ
γ tγ . (3.2.1)

We call the numbers fαβ
γ the structure constants of the Lie algebra.

We call a Lie algebra abelian if all structure constants vanish, fαβ
γ = 0; then all

generators of the Lie algebra commute with one another. Furthermore, we say that h ⊂ g
is a Lie subalgebra, if h is a subspace of g, and if the commutators of any two elements
in h lie again in h, i.e. schematically if

[h, h] ⊆ h . (3.2.2)
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Finally, we call h ⊂ g an invariant Lie subalgebra, if h is a Lie subalgebra and satisfies
in addition that

[h, g] ⊆ h . (3.2.3)

i.e. any commutator involving an element from h with any element from g lies in h.

In this course we shall mainly concentrate on compact Lie algebras, i.e. Lie algebras
that are associated to compact Lie groups. Compact Lie groups are the natural analogues
of finite groups since for them all representations are completely reducible; in fact, the
argument is essentially the same as the one given in section 1.3, the only difference being
that the sum over the entire finite group in (1.3.1) is replaced by the integral over the
compact group (which also converges). The situation for non-compact groups is much
more complicated, and we shall not attempt to describe it here.

We shall furthermore exclude abelian factors; more precisely, we shall consider only
semi-simple Lie algebras. We call a Lie algebra g semi-simple if it contains no abelian
invariant Lie subalgebra. Note that this definition does not exclude that g contains a
non-abelian invariant Lie subalgebra h. However, if g is in addition compact (which in
particular implies that all representations are completely reducible) then we can decom-
pose the adjoint representation as

g = h⊕ h′ , (3.2.4)

where
[g, h] ⊆ h , [g, h′] ⊆ h′ . (3.2.5)

Because of (3.2.4) it then follows that [h, h′] ⊆ h ∩ h′ = 0, and thus (3.2.4) decomposes g
into a direct sum of commuting Lie subalgebras. Proceeding recursively in this manner,
we can therefore show that every compact semi-simple Lie algebra is a direct sum of
pairwise commuting simple Lie algebras, where a simple Lie algebra is characterised by
the property that it does not contain any invariant Lie subalgebra.

In the following we shall therefore restrict our attention to the analysis of compact
simple Lie algebras; typical examples are the Lie algebras su(N) associated to the groups
SU(N), or the Lie algebras so(N) associated to the groups SO(N). (Exercise: Find a
basis for the Lie algebras so(N) and determine their dimension.)

3.2.1 Killing Form

An important concept in the theory of Lie algebras is the Killing form. Suppose (V, ρ) is
a representation of a Lie algebra g. We define the Killing form of g via

ḡαβ ≡ ḡ(tα, tβ) = TrV
(
ρ(tα) ρ(tβ)

)
. (3.2.6)

For example, in the adjoint representation we have

gαβ ≡ g(tα, tβ) = fαδ
γ fβγ

δ , (3.2.7)

where the sum over γ and δ is implicit.
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Many of the structural properties of a Lie algebra can be read off from the Killing form.
For example, a Lie algebra is semi-simple if the Killing form in the adjoint representation
gαβ, (3.2.7), is non-degenerate, i.e.

det(gαβ) 6= 0 . (3.2.8)

Furthermore, a semi-simple Lie algebra is compact if the Killing form in the adjoint
representation is negative definite.

It is sometimes awkward to work out the Killing form in the adjoint representation
(since this may be quite large). However, for simple Lie algebras, the Killing form is the
same in any representation, up to an overall proportionality factor.

The primary examples we shall consider in this course are the simple Lie algebras
su(N) associated to the compact group

SU(N) =
{
M ∈ MatN(C) : M † = M−1 and det(M) = 1

}
. (3.2.9)

(This group is indeed compact since all matrix entries must be in modulus less or equal
than 1.) The condition that det(M) = 1 implies that the corresponding Lie algebra
element Ω is traceless, Tr(Ω) = 0, while M † = M−1 implies that Ω is anti-hermitian, i.e.
that Ω† = −Ω. Note that this last condition implies that the entries along the diagonal
are purely imaginary, and the trace condition leads then to N − 1 real parameters. The
off-diagonal entries are complex, but Ω† = −Ω determines the entries below the diagonal
in terms of those above the diagonal; the total real dimension is therefore

dimR(su(N)) = (N − 1) + 2
N(N − 1)

2
= (N − 1)(N + 1) = N2 − 1 . (3.2.10)

The simplest case arises for su(2), in which case the Lie algebra is 3-dimensional. A
basis may be taken to be given by the matrices

D =

(
i 0
0 −i

)
, M12 =

(
0 1
−1 0

)
, M̂12 =

(
0 i
i 0

)
. (3.2.11)

The non-trivial commutation relations take the form

[D,M12] = 2M̂12 , [D, M̂12] = −2M12 , [M12, M̂12] = 2D . (3.2.12)

Note that this Lie algebra is precisely isomorphic to the Lie algebra of so(3), defined
above in (3.1.10) and (3.1.11), the identification being

Ω1 =
1

2
D , Ω2 =

1

2
M12 , Ω3 =

1

2
M̂12 . (3.2.13)

In the adjoint representation, the three generators are represented by the 3× 3 matrices

D ∼=

0 0 0
0 0 −2
0 2 0

 , M12
∼=

 0 0 2
0 0 0
−2 0 0

 , M̂12
∼=

0 −2 0
2 0 0
0 0 0

 , (3.2.14)
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where we take the basis to be given by (D,M12, M̂12), in this order. Thus the Killing
form, i.e. the trace of the products of these matrices, takes the form

g =

−8 0 0
0 −8 0
0 0 −8

 . (3.2.15)

The Killing form is indeed negative definite, thus reflecting that su(2) ∼= so(3) is a compact
Lie algebra. Note that the definition of su(2) in terms of 2×2 matrices in (3.2.11) implies
that the Lie algebra possesses a 2-dimensional representation. We can therefore also
evaluate the Killing form in this 2-dimensional representation, and we find that it equals

g2d =

−2 0 0
0 −2 0
0 0 −2

 . (3.2.16)

Note that the two Killing forms are indeed proportional to one another, as must be the
case for simple Lie algebras.

Another slightly more complicated example is provided by the Lie algebra su(3). It is
8-dimensional, and a basis may be taken to be given by the matrices

D1 =

i 0 0
0 −i 0
0 0 0

 , D2 =

0 0 0
0 i 0
0 0 −i

 , (3.2.17)

as well as

M12 =

 0 1 0
−1 0 0
0 0 0

 , M13 =

 0 0 1
0 0 0
−1 0 0

 , M23 =

0 0 0
0 0 1
0 −1 0

 , (3.2.18)

and

M̂12 =

0 i 0
i 0 0
0 0 0

 , M̂13 =

0 0 i
0 0 0
i 0 0

 , M̂23 =

0 0 0
0 0 i
0 i 0

 . (3.2.19)

One checks that, in the adjoint representation, the action of D1 and D2 is given by

D1 : M12 → 2M̂12 , M̂12 → −2M12 , D2 : M12 → −M̂12 , M̂12 →M12 ,
(3.2.20)

D1 : M13 → M̂13 , M̂13 → −M13 , D2 : M13 → M̂13 , M̂13 → −M13 ,
(3.2.21)

as well as

D1 : M23 → −M̂23 , M̂23 →M23 , D2 : M23 → 2M̂23 , M̂23 → −2M23 ,
(3.2.22)
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while D1 and D2 act trivially on Di, i = 1, 2. Furthermore, g(Di,Mjk) = g(Di, M̂jk) = 0,
and hence the Killing form, when restricted to D1 and D2, has the form

g(Di, Dj) =

(
−12 6

6 −12

)
(3.2.23)

which is indeed negative definite.
Actually, writing the generators of su(3) in terms of 3 × 3 matrices, automatically

defines a 3-dimensional representation of su(3). We can also evaluate the Killing form in
that representation, and we find, again restricting attention to the generators D1 and D2,

ḡ(Di, Dj) =

(
−2 1
1 −2

)
. (3.2.24)

As before, the two Killing forms (at least when restricted to these generators) are pro-
portional to one another, as must be the case for the simple Lie algebra su(3).

3.2.2 Complexification

So far the Lie algebras we have discussed are real, i.e. the underlying vector space is a real
vector space. (One should not get confused by the fact that some of the matrix entries
are complex; the underlying vector space consists of real linear combinations of these
generators, and the fact that the structure constants are real implies that the commutators
lie again in the same real vector space.)

For much of the subsequent analysis of Lie algebras it is very convenient to consider the
complexification of this Lie algebra, i.e. to consider the complex vector space with the
same basis. Note that, upon complexification, different real Lie algebras can become the
same complex Lie algebra. For example, consider the Lie algebra sl(2) that is associated
to the Lie group

SL(2,R) = {A ∈ Mat2(R) : det(A) = 1} . (3.2.25)

We note in passing that this Lie group is not compact since it contains the ‘infinite’
direction

A =

(
1 x
0 1

)
, x ∈ R . (3.2.26)

The corresponding Lie algebra consists of the traceless real 2× 2 matrices, for which we
may take a basis to consist of

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
. (3.2.27)

The commutation relations are then

[H,E] = 2E , [H,F ] = −2F , [E,F ] = H . (3.2.28)
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If we complexify this Lie algebra, i.e. allow for complex linear combinations of the genera-
tors, then the Lie algebra is isomorphic to the complexification of su(2) ∼= so(3). Indeed,
we can write the generators of su(2) as

D = iH , M12 = E − F , M̂12 = i(E + F ) . (3.2.29)

However, the original real Lie algebras are not isomorphic, su(2) 6∼= sl(2). One way to see
this is that in the adjoint representation of sl(2) the generator H is diagonalisable with
eigenvalues 0,±2, whereas in so(3) ∼= su(2) the generators define rotations which are not
diagonalisable over the reals.

Note that once we have complexified the Lie algebra, it does not make much sense
any longer to talk about whether the Lie algebra is compact or not. (In particular, the
condition whether the Killing form is negative definite is not invariant under multiplying
the generators by complex numbers!) In fact, as we have just seen, a given complex
Lie algebra can have (and actually will have) different ‘real forms’, i.e. different real Lie
subalgebras, that may or may not be compact.

What is important for the following is that every complex semi-simple Lie algebra
always possesses a real form that is compact. Thus, once we restrict our attention to
semi-simple (and thus ultimately simple) complex Lie algebras, we may always think of
them as being the complexification of a compact semi-simple (or simple) Lie algebra. In
particular, complete decomposability and all the other nice properties will hold. Thus
from now on we can just consider complex simple Lie algebras, and not worry any longer
about their associated compact real form (although we know that it will exist, and we
shall sometimes exhibit it).
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4 Complex simple Lie algebras — the case of su(2)

In this chapter we want to begin and understand the structure of the complex simple Lie
algebras. In particular, we want to introduce and motivate the so-called Cartan-Weyl
basis, and explain the structure of the representation theory. Here we will be studying
the familiar example of su(2); the case of su(3) will be covered in the following section,
after which we turn to the generalisation to all simple Lie algebras.

4.1 The complexification of su(2)

Let us begin by studying the complexification of the simple Lie algebra su(2). As we have
seen above, this complexification is actually isomorphic to the complexification of the real
Lie algebra sl(2,R). In fact, it follows from the analysis of (3.2.27) that we can identify
this complexification with the Lie algebra sl(2,C) associated to the Lie group SL(2,C).
So we should denote the complexification of su(2) by sl(2,C); we should warn the reader
though that we shall sometimes follow physicist conventions in simply taking su(2) also
to mean its complexification.

As we have seen above, the complexified Lie algebra su(2) (i.e. sl(2,C)) has a nice
basis in which one generator, which we called H, is diagonal. Indeed, recall from (3.2.28)
above that in the basis denoted by H,E, F the commutation relations are simply

[H,E] = 2E , [H,F ] = −2F , [E,F ] = H . (4.1.1)

Thus we can think of E and F as raising and lowering operators that change the eigenvalue
of H by ±2.

This basis seems like a very natural basis to choose, but in fact the choice is dictated
by more than aesthetics. There is, as we shall see, a nearly canonical way of choosing a
basis of a simple Lie algebra (up to conjugation) which will yield this basis in the present
circumstance and which will share many of the properties we describe below. This basis
is called the Cartan-Weyl basis.

4.2 The representation theory

Part of the reason why this is a natural basis to consider is that it makes the analysis of
the representation theory very simple. Suppose that V is an irreducible finite-dimensional
representation of sl(2,C). One can show (although we shall not attempt to do this here)
that the action of the generator H on V is diagonalisable. Thus we have a decomposition

V =
⊕
α

Vα , (4.2.1)

where α run over a collection of complex numbers, such that for any vector v ∈ Vα we
have

H(v) = α · v . (4.2.2)
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Next we want to understand how E and F act on the various spaces Vα. We claim that
E and F must each carry the subspaces Vα into other subspaces Vα′ . In order to see this,
suppose that v ∈ Vα. Then we find

HE(v) = [H,E]v + EH(v)

= 2E(v) + αE(v) = (2 + α)E(v) , (4.2.3)

i.e. E(v) is an eigenvector of H with eigenvalue (2 + α); in other words,

E : Vα → Vα+2 . (4.2.4)

Similarly, we can show that F : Vα → Vα−2. Note that, as an immediate consequence of
the irreducibility of V , the complex numbers α that appear in the decomposition (4.2.1)
must be congruent to one another mod 2. Indeed, for any α0 that actually occurs in
(4.2.1), the subspace ⊕

n∈Z

Vα0+2n (4.2.5)

will be invariant under the action of sl(2,C), and hence, because of irreducibility, must
be all of V . Moreover, by the same token, the Vα that appear must form an unbroken
string of numbers of the form β, β+ 2, β+ 4, . . . , β+ 2k. We denote by n the last element
in this sequence; at this point we just know that n is a complex number, but we will soon
see that it must be an integer.

Now choose any v ∈ Vn. Since Vn+2 = {0}, it follows that E(v) = 0. We ask now
what happens when we apply F to the vector v, To begin with we claim

Claim: The vectors {v, F (v), F 2(v), . . .} span V .

From the irreducibility of V it is enough to show that the subspace W ⊂ V spanned by
these vectors is carried into itself under the action of sl(2,C). Clearly F preserves W ,
and so does H (since it acts diagonally). To begin with we have E(v) = 0, so the first
interesting cases are

EF (v) = [E,F ](v) + FE(v)

= H(v) + 0 = nv (4.2.6)

and

EF 2(v) = [E,F ]F (v) + FEF (v)

= HF (v) + F (nv)

= (n− 2)F (v) + nF (v) = (2n− 2)F (v) , (4.2.7)

where we have used the result of the first calculation in going to the second line. The
pattern is now clear: E carries each vector in the sequence v, F (v), F 2(v), . . . into a
multiple of the previous vector; explicitly we have

EFm(v) =
(

(n− 2m+ 2) + (n− 2m+ 4) + · · · (n− 4) + (n− 2) + n
)
Fm−1(v) (4.2.8)
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or
EFm(v) = m(n−m+ 1)Fm−1(v) , (4.2.9)

as can readily be verified by induction noting that

(m+1)(n−(m+1)+1) = m(n−m)+(n−m) = m(n−m+1)+(n−2(m+1)+2) . (4.2.10)

This then proves the claim.

Note that it follows from the above claim that all the eigenspaces Vα of H are one-
dimensional. Furthermore, since we have in the course of the proof written down a basis
for V and said exactly how each of H, E and F act on them, the representation V is
completely determined by the one complex number n that we started with. To complete
our analysis we have to use one more time the finite dimensionality of V . This tells us that
there is a lower bound on the α for which Vα 6= 0, so that F kv = 0 for some sufficiently
large k. Suppose then that m is the smallest power of F annihilating v, then from (4.2.9)
it follows that

0 = EFm(v) = m(n−m+ 1)Fm−1(v) . (4.2.11)

Since m is the smallest power for which Fm(v) = 0, it follows that Fm−1(v) 6= 0, and hence
n−m+ 1 = 0. In particular, we can therefore conclude that n is a non-negative integer.
The picture is thus that the eigenvalues α of H on V form a string of integers differing by 2,
and symmetric about the origin in Z. For each integer n, there is a unique representation
V (n) of dimension n+ 1, whose H-eigenvalues are n, n− 2, n− 4, . . . ,−n+ 2,−n.

Note that the existence part of this last statement may be deduced by checking that
the actions of H, E and F as given above in terms of the basis v, F (v), F 2(v), . . . F n(v)
for V do indeed satisfy all the commutation relations of sl(2,C). Alternatively, we will
exhibit them shortly. Note that by the symmetry of the eigenvalues we may deduce a
useful fact that any representation V of sl(2,C) such that the eigenvalues of H all have
the same parity and occur with multiplicity one is necessarily irreducible; more generally,
the number of irreducible factors in an arbitrary representation V of sl(2,C) is exactly
the sum of the multiplicities of 0 and 1 as eigenvalues of H.

We can identify in these terms some of the standard representations of sl(2,C). To
begin with, the trivial one-dimensional representation C is clearly just V (0). As for the
standard 2-dimensional representation in terms of 2× 2 matrices, see (3.2.27) above, the
eigenvalues of H are ±1, and hence it can be identified with V (1). For the following it is
convenient to denote the two basis vectors by x and y, with eigenvalues H(x) = x and
H(y) = −y.

4.3 The Clebsch-Gordan series

For the following it will be important to analyse tensor products of these representations.
Recall that the action of the group G on a tensor product of two representations V1 ⊗ V2

is defined by
ρ : G→ End(V1 ⊗ V2) , g 7→ ρ1(g)⊗ ρ2(g) . (4.3.1)
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We first want to understand what this implies for the action of the Lie algebra g. Recall
from (3.1.16) that the action of the corresponding Lie algebra generator Ω = d

dt
R(t)

∣∣
t=0

is then defined by derivation; thus we conclude that the action of the Lie algebra on the
tensor product is defined by

ρ : g→ End(V1 ⊗ V2) , Ω 7→ ρ1(Ω)⊗ 1 + 1⊗ ρ2(Ω) , (4.3.2)

as follows directly from the product rule. (Here 1 is the identity map.)

With these preparations we can now consider tensor products of the representations
V (n). Let us begin by studying the tensor product of V ≡ V (1) with itself. Using the
notation xi, yi , i = 1, 2 for the basis vectors of the two vector spaces, the tensor product
then consists of the vectors x1x2, x1y2, x2y1 and y1y2. Their H-eigenvalues are +2, 0, 0 and
−2; thus it follows from the above considerations on the structure of the H-eigenvalues
that

V ⊗ V = V (2) ⊕ V (0) . (4.3.3)

Actually, V (2) can be identified with the symmetric square of this tensor product, i.e.
Sym2V = V (2).

Continuing in this manner, we can recursively study the tensor product of V with
V (n); the H-eigenvalues of the tensor product are then

(n+ 1) , 2 · (n− 1) , 2 · (n− 3) , . . . , 2 · (−n+ 3) , 2 · (−n+ 1) , −(n+ 1) . (4.3.4)

Thus, by the above argument on the structure of the eigenvalues we conclude that

V ⊗ V (n) = V (n+1) ⊕ V (n−1) . (4.3.5)

In particular, this therefore proves by induction that all V (n) actually exist. It is not hard
to deduce the general case in a similar manner (Exercise): we find

V (n) ⊗ V (m) =
n+m⊕

l=|n−m|

V (l) , (4.3.6)

where the step size for l is two. Furthermore, one finds that the totally symmetric power
of V , SymnV , just consists of the top representation,

SymnV = V (n) . (4.3.7)

Thus all irreducible representations of sl(2,C) arise as a symmetric power of the standard
V ∼= C2 representation.

Much of the structure of this example, which is probably already familiar from the
quantum mechanics course, can be generalised to the other Lie algebras as well. However,
as an illustrative example, su(2) is not really adequate as it does not exhibit many of the
features that will be present in general. A somewhat more realistic example is the Lie
algebra of su(3) that we want to study next.
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5 Complex simple Lie algebras — the case of su(3)

In this section we now want to generalise the results from the previous section to the case
of su(3).

5.1 The complexification of su(3) and the Cartan-Weyl basis

The Lie algebra su(3) was already introduced in section 3.2.1. Again, as before for the case
of su(2) we want to consider its complexification, i.e. the Lie algebra whose vector space
consists of the complex linear combinations of the generators (3.2.17) – (3.2.19). This
vector space can be identified with the vector space of traceless complex 3× 3 matrices,
and thus with the Lie algebra sl(3,C).

We will proceed by analogy with the analysis for sl(2,C); in that case we started
out with the special basis consisting of {H,E, F}, and then proceeded to decompose an
arbitrary representation V of sl(2,C) into a direct sum of eigenspaces for the action of
H. What element of sl(3,C) in particular will play the role of H? The answer – and
this is the first and perhaps most wrenching change from the previous case — is that
no one element really allows us to see what is going on. Instead, we have to replace the
single element H ∈ sl(2,C) with a subspace h ⊂ sl(3,C), namely, the two-dimensional
subspace of all diagonal matrices which is spanned byD1 andD2, see eq. (3.2.17). The idea
is a basic one: it comes down to the observation that commuting diagonalisable matrices
are simultaneously diagonalisable. This translates, in the present circumstance, to the
statement that any finite-dimensional representation V of sl(3,C) admits a decomposition
V = ⊕Vα, where every vector v ∈ Vα is an eigenvector for every element H ∈ h.

At this point some terminology is in order. To begin with, by an eigenvector for h we
will mean a vector v ∈ V that is an eigenvector for every H ∈ h. For such a vector v we
can write

H(v) = α(H) · v , (5.1.1)

where α(H) is a scalar depending linearly on H, i.e., α is an element of the dual space,
α ∈ h∗. This leads to our second notion: by an eigenvalue for the action of h we will mean
an element α ∈ h∗ such that there exists a non-zero element v ∈ V satisfying (5.1.1).
Thus any finite-dimensional representation V of sl(3,C) has a decomposition

V =
⊕
α

Vα , (5.1.2)

where Vα is an eigenspace for h and α ranges over a finite subset of h∗.
This is, in fact, a special case of a more general statement: for any semisimple Lie

algebra g, we will be able to find an abelian subalgebra h ⊂ g such that the action of h
on any (finite-dimensional) g-module V will be diagonalisable, i.e., we will have a direct
sum decomposition of V into eigenspaces Vα for h. The subalgebra h will be called the
Cartan subalgebra of g.
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Having decided what the analogue for sl(3,C) of H ∈ sl(2,C) is, let us now consider
what will play the role of E and F . The key here is to look at the commutation relations

[H,E] = 2E , [H,F ] = −2F , (5.1.3)

see (4.1.1). The correct way to interpret these is as saying that E and F are eigenvectors
for the adjoint action of H on sl(2,C). Thus, for the case of sl(3,C), we should now
look for eigenvectors (in the above sense) for the adjoint action of h on sl(3,C). Put
differently, we want to apply (5.1.2) to the adjoint representation of sl(3,C) to obtain a
decomposition

sl(3,C) = h⊕
(⊕

α

gα

)
, (5.1.4)

where α ranges over a finite subset of h∗, and h acts on each space gα by scalar multipli-
cation, i.e., for any H ∈ h and E ∈ gα

[H,E] = ad(H)(E) = α(H) · E . (5.1.5)

This is probably easier to carry out in practice than it is to say; we are being longwinded
here because once this process is understood it will be straightforward to apply it to the
other Lie algebras. In any case, to do it for sl(3,C) we note that h consists of the matrices

h =


a1 0 0

0 a2 0
0 0 a3

 : a1 + a2 + a3 = 0

 . (5.1.6)

The adjoint action of h on the other generators of sl(3,C) then takes the forma1 0 0
0 a2 0
0 0 a3

  0 e12 e13

e21 0 e23

e31 e32 0

−
 0 e12 e13

e21 0 e23

e31 e32 0

 a1 0 0
0 a2 0
0 0 a3



=

 0 (a1 − a2)e12 (a1 − a3)e13

(a2 − a1)e21 0 (a2 − a3)e23

(a3 − a1)e31 (a3 − a2)e32 0

 . (5.1.7)

Thus the eigenvectors are simply the matrices Eij, i 6= j, whose only non-zero matrix
entry is a 1 in position (ij), and the corresponding eigenvalue is (ai− aj). More formally,
let us define the element Li of h∗ by

Li

a1 0 0
0 a2 0
0 0 a3

 = ai , i = 1, 2, 3 . (5.1.8)

Then the dual space h∗ is spanned by the Li, subject to the relation L1 + L2 + L3 = 0
(since this relation is true on any element of h). The linear functionals appearing in the
decomposition (5.1.4) are then the six functionals Li − Lj, where i 6= j, and the space
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Figure 1: The roots of sl(3,C) — usually the trivial eigenspace is not called a root.

gLi−Lj is generated by the element Eij. The structure of the eigenvalues is sketched in
Figure 1.

The virtue of this decomposition is that we can read off from it pretty much the entire
structure of the Lie algebra. By construction, the action of h on g is clear from the picture:
h carries each of the subspaces gα into itself, acting on each gα by scalar multiplication by
the linear functional represented by α. In order to understand the structure of the other
commutators, suppose that E ∈ gα and F ∈ gβ. Then we find that their commutator
satisfies for any H ∈ h

[H, [E,F ]] = [E, [H,F ]] + [[H,E], F ]

= [E, β(H) · F ] + [α(H) · E,F ] =
(
α(H) + β(H)

)
· [E,F ] , (5.1.9)

where we have used the Jacobi identity in the first step. Thus we conclude that the
commutator [E,F ] must lie in the eigenspace with eigenvalue α + β,

[gα, gβ] ⊂ gα+β . (5.1.10)

While this does not fix everything, e.g., we do not know the numerical factors that appear
for these various commutators, etc., it does determine the structure of the Lie algebra to
a large extent. As we have seen (and this will continue to hold in general) each of the
eigenspaces gα is actually 1-dimensional; the basis that consists of the generators of gα,
as well as two arbitrary generators of h, is called the Cartan-Weyl basis of sl(3,C).

Pretty much the same picture also applies to any other representation V of sl(3,C).
Again we start from the eigenspace decomposition V =

⊕
α Vα for the action of h. Then

the commutation relations for sl(3,C) tell us exactly how the remaining summands of the
decomposition of sl(3,C), see (5.1.4), act on the space V , and again we will see that each
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of the spaces gα acts by carrying an eigenspace Vβ into another. Indeed, suppose that
E ∈ gα and v ∈ Vβ. Then by an analogous calculation to (4.2.3) — in fact, also (5.1.9) is
the same calculation in disguise, just applied to the adjoint representation — we find for
any H ∈ h

H E(v) = EH(v) + [H,E](v)

= E (β(H) · v) + (α(H) · E)(v)

=
(
α(H) + β(H)

)
· E(v) . (5.1.11)

Thus E(v) is again an eigenvector for the action of h with eigenvalue α+β; in other words
gα carries Vβ to Vα+β,

gα : Vβ → Vα+β . (5.1.12)

Note that this implies, in particular, that the eigenvalues α that occur in an irreducible
representation of sl(3,C) differ from one another by integral linear combinations of the
vectors Li − Lj ∈ h∗.

At this point we should introduce a little bit of terminology. The vectors Li−Lj ∈ h∗

generate a lattice in h∗ that, by definition, consists of all the integer linear combinations
of Li − Lj ∈ h∗; this lattice will be called the root lattice and denoted by ΛR.

For a representation V , let α ∈ h∗ be one of the eigenvalues that appears in the
decomposition V =

⊕
α Vα. Then we call α a weight of the representation V . The

corresponding eigenvectors in Vα are called weight vectors, and the spaces Vα themselves
weight spaces.

The weights that appear in the adjoint representation are special; they are the roots
of the Lie algebra, and the corresponding subspaces gα ∈ g are called root spaces. By
convention, zero is not a root. Then the root lattice is just the lattice generated by the
roots of the Lie algebra.

5.2 The general representation theory

Next we want to understand general aspects of the representation theory of sl(3,C) in
some detail. In order to do so, let us go back to what we did for sl(2,C). There, we
started by considering an ‘extremal’ eigenspace, namely the one corresponding to the
largest eigenvalue of H. The corresponding eigenvector then had the property that it was
annihilated by the ‘raising’ operator E. Starting from this ‘highest weight’ state we then
constructed the full representation by acting on it with the ‘lowering’ operators F .

What would be the appropriately analogous setup in the case of sl(3,C)? To start at
the beginning, there is the question of what we mean by ‘extremal’: in the case of sl(2,C)
we knew that all the eigenvalues were scalars differing by integral multiple of 2, so there
was not much of an ambiguity in what we meant by this. In the present case, however,
this does involve a priori some choice (although, as we shall see, this choice does not affect
the outcome). We have to choose a direction, and look for the largest α in that direction
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appearing in the decomposition of sl(3,C) in (5.1.4). This is to say, we should choose a
linear functional

l : ΛR → R , (5.2.1)

extend it by linearity to a linear functional l : h∗ → C, and then for any representation V
we should go to the eigenspace Vα for which the real part of l(α) is maximal. In order to
avoid some ambiguity we should choose l to be irrational with respect to the lattice ΛR,
that is, to have no kernel in ΛR.

What is the point of this? The answer is that, just as in the case of sl(2,C), we will
in this manner find a vector v that is an eigenvector for h, and at the same time in the
kernel of the action of gβ for every β for which l(β) > 0; in particular, it will therefore
be killed by half the root spaces gβ. (These roots then play the role of E before.) Then
we can generate the full representation by acting on this ‘highest weight state’ with the
other roots, i.e., the root spaces gβ with l(β) < 0.

Again, this is easier to understand if we carry it out explicitly. We make the ansatz
for the functional l to take the form

l
(
c1L1 + c2L2 + c3L3

)
= r1c1 + r2c2 + r3c3 , (5.2.2)

for some real numbers r1, r2 and r3. Since the root lattice is characterised by the condition
c1 + c2 + c3 = 0 we choose r1 + r2 + r3 = 0. Furthermore, for concreteness we consider
the case r1 > r2 > r3, so that the spaces gα ∈ g for which l(α) > 0 are precisely gL1−L2 ,
gL1−L3 and gL2−L3 , see Figure 2. Thus the generators Eij with i < j generate the positive
root spaces, while the generators Eij with i > j generate the negative root spaces. We
also define

Hij = [Eij, Eji] = Eii − Ejj ∈ h . (5.2.3)

[In terms of our earlier notation, we therefore have H12 = −iD1 and H23 = −iD2, see
eq. (3.2.17).]

Now let V be any irreducible finite-dimensional representation of sl(3,C). Then con-
sider a vector v ∈ V that is an eigenvector for h, i.e. v ∈ Vα for some α, and that has the
property that v is annihilated by E12, E13 and E23,

E12(v) = E13(v) = E23(v) = 0 . (5.2.4)

For any representation V of sl(3,C), a vector v ∈ V with these properties is called a
highest weight vector. It exists because V is finite-dimensional, and hence there is a
weight α such that l(α) is maximal — v is then an element of that weight space. (In fact,
as we shall see momentarily, since V is irreducible, the corresponding weight space must
be one-dimensional.)

As for the case of sl(2,C) we should now expect that we can generate the full repre-
sentation by acting with the negative root spaces on v. In fact, since [E32, E21] = E31, it
is enough to use as ‘creation’ operators just E21 and E32.

To see that this is indeed the case, we define (as before in the argument for sl(2,C))
the subspace W ⊆ V that is spanned by the images of v under the subalgebra of sl(3,C)
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Figure 2: A choice of positive roots for sl(3,C).

generated by the lower-triangular matrices E21, E31 and E32. Then we have to show that
W is actually preserved under the action of the full Lie algebra sl(3,C), and hence must
agree with V (since V is irreducible). So all we have to do is check that E12, E23 and
E13 carry W into itself — actually, it is sufficient to check this for the first two, since
E13 = [E12, E23].

To begin with let us check that E21(v) is kept in W ; thus we have to calculate

E12

(
E21(v)

)
= E21

(
E12(v)

)
+ [E12, E21](v)

= α([E12, E21]) · v , (5.2.5)

where we have used that E12(v) = 0 and [E12, E21] = H12 ∈ h. Similarly, we calculate

E23

(
E21(v)

)
= E21

(
E23(v)

)
+ [E23, E21](v)

= 0 , (5.2.6)

since E23(v) = 0 and [E23, E21] = 0. A similar computation shows that E32(v) is also
carried into W by the action of E12 and E23.

We can now argue more generally by some sort of induction. Let wn denote any word
of length n or less in the letters E21 and E32, and take Wn to be the vector space spanned
by the vectors wn(v) for all such words. (Then W will be the union of all the spaces Wn.)
We now claim that E12 and E23 carry Wn into Wn−1. To see this, we can write wn ∈ Wn

as wn = E21(wn−1) or as wn = E32(wn−1), where in either case wn−1 is an eigenvector for
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h with some eigenvalue β. In the former case we then have

E12wn = E12

(
E21(wn−1)

)
= E21

(
E12(wn−1)

)
+ [E12, E21](wn−1)

= E21(wn−2) + β([E12, E21]) · wn−1 , (5.2.7)

where wn−2 ≡ E12(wn−1) is by the induction hypothesis an element in Wn−2, and we have
used that [E12, E21] = H12 ∈ h; and

E23wn = E23

(
E21(wn−1)

)
= E21

(
E23(wn−1)

)
+ [E23, E21](wn−1)

= E21(ŵn−2) , (5.2.8)

where ŵn−2 ≡ E23(wn−1) is again, by the induction hypothesis, an element in Wn−2.
Essentially the same calculation covers the other case when wn = E32(wn−1). In each case
the right-hand side is then contained in Wn−1, thus proving the statement in question.

Actually, this argument shows more generally that any irreducible finite-dimensional
representation of sl(3,C) has a unique highest weight vector, up to scalars. Indeed, on
every highest weight state we can build a subrepresentation W by applying successively
the operators E21 and E23, and if the representation V is irreducible, this must mean that
V = W , i.e., that the space of highest weight states is 1-dimensional.

In order to understand the actual structure of the representation V that is generated
from a highest weight state, it is very instructive to look at the strings of states Ek

21(v).
They generate vectors in the eigenspaces gα, gα+L2−L1 , gα+2(L2−L1), etc., that correspond
to points on the boundary of the space of possible eigenvalues of V . We also know that
they span an uninterrupted string of non-zero eigenspaces gα+k(L2−L1)

∼= C, k = 0, 1, . . .,
until we get to the first m such that (E21)m(v) = 0; after that we have gα+k(L2−L1) = {0}
for all k ≥ m.

The obvious question now is how long the string of non-zero eigenspaces is. One way
to answer this would be to make a calculation analogous to the one we did for the case of
sl(2,C): use the above computation to determine explicitly the proportionality constant
in E12(E21)k(v) ∼= (E21)k−1(v); in particular for k = m this constant must be zero since
m is the first value for which (E21)m(v) = 0. However it will be simpler — and indeed
more instructive — if instead we use what we have already learned about representations
of sl(2,C). In fact, the elements

E = E12 , F = E21 , H = H12 = [E12, E21] (5.2.9)

form a subalgebra of sl(3,C) that is isomorphic to sl(2,C); we will denote this subalgebra
by sL1−L2 . By the description we have already given of the action of sl(3,C) on the
representation V in terms of the decomposition V =

⊕
Vα, we see that the subalgebra

sL1−L2 will shift eigenspaces Vα only in the direction of L2 − L1; in particular, the direct
sum of the eigenspaces in question, namely the subspace

W =
⊕
k

Vα+k(L2−L1) (5.2.10)
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Figure 3: The weights of an sl(3,C) representation.

of V will be preserved by the action of sL1−L2 . Thus the subspace W is a representation
of sL1−L2

∼= sl(2,C), and we may deduce from this that the eigenvalues of H12 on W are
integral and symmetric with respect to zero. Leaving aside the integrality for the moment,
this says that the string of eigenvalues must be symmetric with respect to the line L that
is characterised by the condition L(H12) = 0 in the plane h∗. Happily, (although by no
means coincidentally), this line is perpendicular to the line spanned by L1 − L2. Thus
we can conclude that the string of eigenvalues that appear in the weight space of V is
symmetrical under the reflection in this line L.

Actually, this construction is not just possible for E12 and E21: for any i < j, the
elements

E = Eij , F = Eji , H = Hij = [Eij, Eji] (5.2.11)

form a subalgebra of sl(3,C) that is isomorphic to sl(2,C), and that we shall denote
by sLi−Lj . In particular, by analysing the subalgebra sL2−L3 we can likewise show that
the string of eigenvalues corresponding to the eigenspaces Vα+k(L3−L2) is preserved under
reflection in the line L

′
in h∗ that contains the elements of h∗ with L′(H23) = 0.

Finally, let us consider the last vector in the first string of vectors, i.e., the vector
v′ ≡ (E21)m−1(v) with weight β = α + (m − 1)(L2 − L1). (Remember that m is defined
to be the first value for which (E21)m(v) = 0.) By construction, v′ is annihilated by E21.
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It is furthermore annihilated by E23 since

E23v
′ = E23 (E21)m−1(v) =

m−2∑
l=0

(E21)l [E23, E21] (E21)m−2−l(v) + (E21)m−1E23(v)

= 0 , (5.2.12)

since E23(v) = 0 and since the commutator [E23, E21] = 0. Furthermore, the same is true
for

E13v
′ = E13 (E21)m−1(v) =

m−2∑
l=0

(E21)l [E13, E21] (E21)m−2−l(v) + (E21)m−1E13(v)

= −
m−2∑
l=0

(E21)lE23 (E21)m−2−l(v) = 0 , (5.2.13)

since E13(v) = 0 and since [E13, E21] = −E23. In the last step we have used the result
from (5.2.12), which also holds if we replace m by any smaller non-negative integer.

Thus we conclude that v′ is a highest weight state, but now with respect to the linear
functional l with r2 > r1 > r3 so that E21, E13 and E23 are the positive roots. Indeed, if we
had carried out the above analysis with respect to that choice of linear functional l, then
v′ would have played the role of v, and we would have considered the string of eigenvalues
of V associated to the corresponding ‘lowering’ operators E12, E31 and E32. Note that
E32 = [E31, E12], and thus it is sufficient to consider the generators E31 and E12; thus we
can conclude that the string of eigenvalues along L3−L1 and L1−L2 is symmetrical with
respect to reflection along the lines L′′(H13) = 0 and L(H12) = 0, respectively.

Needless to say, we can now continue the same game for the end-point of the string
along the L3 −L1 direction starting from v′; in this manner we will end up with a vector
v′′ that is annihilated by E31, E21, and E23, and which is therefore highest weight with
respect to the linear functional (5.2.2) with r2 > r3 > r1. Continuing in this manner
we will eventually end up with a hexagon of lines that bound the possible eigenvalues
of the representation V ; this hexagon is symmetric with respect to the reflection in each
of the lines L(H12) = 0, L′(H23) = 0 and L′′(H13) = 0, see Figure 3. It is not hard to
show (see the end of this section) that the actual set of eigenvalues includes all the points
inside the hexagon that are congruent to α modulo the root lattice ΛR. Furthermore,
each eigenvalue along the boundary occurs with multiplicity one.

The use of the sl(2,C) subalgebras sLi−Lj does not stop here. In particular, we also
know that the eigenvalues of the elements Hij must be integers; if we write the weights
in terms of the basis vectors Li, i.e.,

α = w1L1 + w2L2 + w3L3 (5.2.14)

then this condition implies that wi − wj ∈ Z. Since we may shift them by any multiple
of L1 + L2 + L3

∼= 0, we may therefore take the wi to be individually integers. Thus the
Li generate the weight lattice, i.e., the lattice ΛW generated by the possible weights
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of any representation. Furthermore, within each irreducible representation, the weights
must differ by elements in the root lattice ΛR.

This is exactly analogous to the situation for sl(2,C): there we saw that the eigenvalues
of H in any irreducible finite-dimensional representation lie in the weight lattice ΛW

∼= Z
of linear forms that are integral on H, and within an irreducible representation were
congruent to one another modulo the sublattice ΛR = 2 ·Z generated by the eigenvalues of
H under the adjoint representation. Note that in the case of sl(2,C) we have ΛW/ΛR

∼= Z2,
while in the present case we have ΛW/ΛR

∼= Z3 (since the quotient space is for example
generated by L1 and 2L1, whereas 3L1 = (L1 + L2 + L3) + (L1 − L2) + (L1 − L3) ∈ ΛR);
we will see later how this reflects a general pattern.

To continue we can go into the interior of the eigenvalue diagram by observing that
for any weight β ∈ h∗ appearing in the decomposition of V , the direct sum

W =
⊕
k

Vβ+k(Li−Lj) (5.2.15)

is a subrepresentation under the action of sLi−Lj (although this representation needn’t
be irreducible). In particular, it follows that the values of k for which Vβ+k(Li−Lj) 6= {0}
form an unbroken string of integers. Thus we can conclude that all eigenvalues (not just
those on the outer boundary) must by symmetrical with respect to the reflections along
the lines L(H12) = 0, L′(H23) = 0 and L′′(H13) = 0.

5.3 Explicit examples of sl(3,C) representations

In the previous subsection we have seen that the weights of any sl(3,C) representation
lie in the weight lattice that is generated by integer linear combinations of L1, L2 and
L3. Furthermore, for our choice of positive roots, see Figure 2, and Figure 3, the highest
weight state lies in the first sextant of the plane that is bounded by the lines L and L′.
Thus every highest weight can be written as

aL1 − b L3 , a, b ∈ N0 . (5.3.1)

In fact, for each such weight there exists a (unique) irreducible representation of sl(3,C),
and each irreducible representation of sl(3,C) has a highest weight state of this form.

In order to get a feeling for this, let us begin by identifying some simple sl(3,C)
representations in this language. To start with we consider the standard (or so-called
fundamental) representation of sl(3,C) on V ∼= C3. Of course, the eigenvectors for the
action of h are just the standard basis vectors e1, e2 and e3. They have eigenvalues L1, L2

and L3, respectively; the weight diagram for V is depicted in Figure 4. The highest weight
vector therefore corresponds to L1; in terms of the above parametrisation, see (5.3.1), this
representation therefore correponds to the pair [a, b] = [1, 0].

Next we consider the dual representation V ∗. The eigenvalues of the dual of a rep-
resentation of a Lie algebra are just the negatives of the eigenvalues of the original, so
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L1

L2

L3

Figure 4: The weights of the standard representation of sl(3,C).

−L1

−L2

−L3

Figure 5: The weights of the dual of the standard representation of sl(3,C).

the diagram for V ∗ has the form depicted in Figure 5. The highest weight vector now
corresponds to −L3, and hence V ∗ correponds to [a, b] = [0, 1].

Note that while in the case of sl(2,C) the weights of any representation were symmetric
about the origin, and correspondingly each representation was isomorphic to its dual, the
same is not true here, in particular V 6∼= V ∗.

Next we consider the tensor product of V with itself. The 9-dimensional vector space
V ⊗ V splits up into

V ⊗ V = Sym2V ⊕ Λ2V , (5.3.2)

where Sym2V consists of those vectors in V ⊗V that are invariant under the exchange of
the two vector spaces, while Λ2V consists of those vectors that are odd under the exchange
of the two vector spaces. (Thus Sym2V has dimension 6, while Λ2V has dimension 3.)
Note that since the action of the Lie algebra on the tensor product is invariant under the
exchange of the two factors, both Sym2V and Λ2V must be separately representations of
sl(3,C). In fact, both of them are irreducible representations of sl(3,C).

To begin with let us study Λ2V ; its weights are the pairwise sums of the distinct
weights of V , i.e. they are L1 + L2 = −L3, L1 + L3 = −L2 and L2 + L3 = −L1. Thus we
conclude that

Λ2V ∼= V ∗ . (5.3.3)
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On the other hand, the weights of Sym2V are depicted in Figure 6. Note that it is
clear from this picture that Sym2V must be irreducible since its collection of weights
cannot be written as a union of two collections arising from sl(3,C) representations. The
highest weight state of this representation has weight 2L1, and hence the representation
corresponds to [a, b] = [2, 0].

L1

L2

L3

Figure 6: The weights of the 6-dimensional representation Sym2V of sl(3,C).

The dual representation to Sym2V is obviously Sym2V ∗, whose weights are just the
negatives of the weights of Sym2V ; its highest weight is −2L3, and hence it is described
by [a, b] = [0, 2].

Next we consider the tensor product V ⊗ V ∗, whose weights are just the sums of the
weights {Li} of V with those {−Li} of V ∗, that is, the linear functionals Li − Lj, each
occuring once, and 0 occuring with multiplicity three; the corresponding weight diagram
is depicted in Figure 7, where the triple circle is intended to convey the fact that the
weight space V0 is 3-dimensional.

L1

L2

L3

Figure 7: The weights of the adjoint and the trivial representation of sl(3,C).

By contrast to the previous examples, this representation is not irreducible. In fact,
there is a linear map

V ⊗ V ∗ → C , v ⊗ u∗ 7→ u∗(v) , (5.3.4)
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that is a map of sl(3,C)-modules, with C being the trivial representation of sl(3,C). (In
terms of the identification V ⊗ V ∗ ∼= Hom(V, V ), this map is simply the trace.) The
kernel of this map is then the subspace of V ⊗ V ∗ of traceless matrices, which is just the
adjoint representation of the Lie algebra sl(3,C) and is irreducible. (Indeed, the unique
highest weight state of the adjoint representation has weight L1 − L3, and hence the
adjoint representation is just [a, b] = [1, 1].) Thus we have the decomposition

V ⊗ V ∗ = 1⊕ adj . (5.3.5)

We should mention in passing that this adjoint representation of sl(3,C) is sometimes
referred to as the ‘eightfold way’ describing the lightest mesons. (The representations V
and V ∗ correspond to the quarks and anti-quarks, respectively; thus V ⊗V ∗ describes the
quark anti-quark pairs, i.e., the mesons.)

More generally, suppose that v and w are the highest weight states with weights α and
β of two irreducible representations V and W , respectively, then v⊗w is a highest weight
state for V ⊗W with weight α + β. In particular, by taking V to be the fundamental
3-dimensional representation of sl(3,C), and W the representation corresponding to the
pair [a, b] = [n, 0] — for n = 1, W = V ; for n = 2, W = Sym2(V ); and the general case is
obtained recursively — we deduce that

V ⊗ [n, 0] ⊃ [n+ 1, 0] . (5.3.6)

Thus we conclude that all representations associated to [n, 0] exist; in fact, it is not hard
to see that the representation [n, 0] just corresponds to

[n, 0] ∼= Symn(V ) . (5.3.7)

By the same token, we can also conclude that

[0, n] ∼= Symn(V ∗) , (5.3.8)

and thus, by the above argument, we also know that the representation

[n,m] ⊂ Symn(V )⊗ Symm(V ∗) (5.3.9)

exists. On the other hand, as we have seen before, starting from a highest weight, there
is an unambiguous way of constructing the corresponding highest weight representation;
it is therefore also clear that these representations are unique. Thus we conclude that
the irreducible representations of sl(3,C) are precisely labelled by the pairs [a, b] with
a, b ∈ N0.

The above construction also implies that all of these representations are contained in
suitable tensor products of the 3-dimensional fundamental representation V of sl(3,C).
Indeed, it is immediate that they appear in multiple tensor products of V and V ∗, but
since

V ∗ = Λ2V (5.3.10)

we do not need to use V ∗ explicitly, but rather can just consider tensor products of V only.
[Obviously, we may equivalently just consider tensor products of V ∗.] This is actually a
very useful and convenient point of view, as we shall now explain.
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5.4 sl(3,C) representations in terms of Young diagrams

Suppose we consider the N -fold tensor product of V . On this N -fold tensor product, the
generators of the Lie algebra act by symmetrical sums, i.e., Ω ∈ sl(3,C) acts as

ρ(Ω) =
N∑
i=1

1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) copies

⊗ρV (Ω)⊗ 1⊗ · · · ⊗ 1 . (5.4.11)

In particular, the action of sl(3,C) on the tensor product therefore commutes with the
permutation action of SN on V ⊗N . Thus we can simultaneously decompose V ⊗N into
irreducible representations of SN and sl(3,C), i.e., we can write

V ⊗N =
⊕
(Γ,R)

Γ⊗R , (5.4.12)

where Γ is an irreducible representation of SN , while R is an irreducible representation
of sl(3,C). As it turns out, SN and sl(3,C) are a ‘dual pair’, i.e., SN is the maximal
commutant for the action of sl(3,C) on V ⊗N and vice versa.3 As a consequence, each
representation Γ and R appears at most once in this decomposition — if, say, a given Γ
appeared twice, i.e., if the decomposition contained

V ⊗N ⊃ (Γ⊗R1)⊕ (Γ⊗R2) , (5.4.13)

then we can construct a linear operator on V ⊗N that acts as the identity on Γ, and maps
a non-trivial vector in R1 to a non-trivial vector in R2. (We may choose some basis for R1

and R2, and simply map the first basis vector to the first basis vector, and map all other
basis vectors to zero. We may furthermore continue this map to be trivial on the other
summands in the decomposition.) This map then commutes by construction with the
action of SN , but it cannot be described by the action of (the universal enveloping algebra
of) sl(3,C) (or gl(3,C)) since the latter necessarily maps R1 to itself. Thus, it follows
that the commutant of SN on V ⊗N is not just sl(3,C), in contradistinction with the above
assumption. Thus we conclude that each irreducible representation appears only once,
i.e., each irreducible representation of sl(3,C) (that is contained in this tensor product)
appears together with a specific representation of SN , and hence we may equivalently
label the representations of sl(3,C) in terms of the associated ‘partner’ representation of
SN .

We may construct this decomposition (and thereby establish the correspondence) quite
explicitly, using the Young symmetrisers. Recall from section 2 that for each standard
Young tableau, i.e., for each Young diagram Γ with a standard filling, we can apply the
operator cΓ to V ⊗N , and the resulting image transforms in the irreducible representation
of SN that is associated to Γ. (Note that the image may also be trivial — in fact, this will
be the case if Γ has a column whose length exceeds the dimension of V , i.e., dim(V ) = 3

3Strictly speaking, the maximal commutant for the action of SN is the universal enveloping algebra
of gl(3,C), but this subtlety is not very important.
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in our case.) By construction, each such subspace is invariant under the action of sl(3,C),
since the Young symmetriser cΓ ∈ C(SN), and the action of SN and sl(3,C) commute. As
was also explained in section 2, in particular section 2.3, there are dim(Γ) standard fillings
of Γ, and hence the given representation of sl(3,C) appears with multiplicity dim(Γ), in
perfect agreement with (5.4.12).

Let us exhibit this construction for the first few cases. To start with, i.e., for N = 1,
we just have the identification

←→ [a, b] = [1, 0] . (5.4.14)

For N = 2, we consider V ⊗2, which can be decomposed into the symmetric and anti-
symmetric part, both of which are separately representations of sl(3,C). Even more
explicitly, if we choose a basis for V to consist of the vectors ei, i = 1, 2, 3, then the
symmetric part is spanned by the six vectors

Sym2V : (ei ⊗ ej) + (ej ⊗ ei) , (5.4.15)

where 1 ≤ i ≤ j ≤ 3. On the other hand, the antisymmetric part is spanned by the three
vectors

Λ2V : (ei ⊗ ej)− (ej ⊗ ei) , (5.4.16)

where 1 ≤ i < j ≤ 3. It is clear that both subspaces are separately representations of
sl(3,C) since Ω ∈ sl(3,C) acts by (Ω⊗1)+(1⊗Ω). In fact, the two subspaces define each an
irreducible representation, as was already mentioned following (5.3.2): for the symmetric
product the relevant representation is [2, 0], while for the antisymmetric product it is
[0, 1]. Now in terms of Young symmetrisers, the symmetric product corresponds to the
Young diagram , while the anti-symmetric product is associated to . Thus we have
the identification

←→ [a, b] = [2, 0] , ←→ [a, b] = [0, 1] . (5.4.17)

At the next step, i.e., at N = 3, we find the decomposition

←→ [a, b] = [3, 0] , ←→ [a, b] = [1, 1] , ←→ [a, b] = [0, 0] .

(5.4.18)
Note that there are two different fillings of , and hence the corresponding representation
of sl(3,C) appears twice in V ⊗3, i.e., we have the decomposition

V ⊗3 = [3, 0]⊕ 2 · [1, 1]⊕ [0, 0] . (5.4.19)

Again, if we write this out explicitly, then the states associated to are spanned by
the 10 vectors of the form

Sym3V : (ei ⊗ ej ⊗ ek) + perm. , (5.4.20)
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where 1 ≤ i ≤ i ≤ k ≤ 3. For the states associated to there are two Young sym-
metrisers we may use; if we consider the symmetriser (2.1.21), then the resulting space is
spanned by the 8 vectors of the form

(ei ⊗ ej ⊗ ek) + (ej ⊗ ei ⊗ ek)− (ek ⊗ ej ⊗ ei)− (ek ⊗ ei ⊗ ej) ,

1 2
3 : (ek ⊗ ej ⊗ ei) + (ej ⊗ ek ⊗ ei)− (ei ⊗ ej ⊗ ek)− (ei ⊗ ek ⊗ ej) ,

while for the symmetriser (2.1.28) the resulting space is spanned by the 8 vectors of the
form

(ei ⊗ ej ⊗ ek) + (ek ⊗ ej ⊗ ei)− (ej ⊗ ei ⊗ ek)− (ej ⊗ ek ⊗ ei)

1 3
2 : (ei ⊗ ek ⊗ ej) + (ej ⊗ ek ⊗ ei)− (ek ⊗ ei ⊗ ej)− (ek ⊗ ej ⊗ ei) .

Each such 8-dimensional space is separately invariant under the action of sl(3,C), and
defines the irreducible representation associated to [1, 1]. Finally, the subspace associated

to is just 1-dimensional, namely the vector

Λ3V : (e1 ⊗ e2 ⊗ e3)± perm. , (5.4.21)

Note that the corresponding representation of sl(3,C) must therefore be the trivial, one-
dimensional representation of sl(3,C). Thus, for sl(3,C), Λ3V does not define a ‘new’
representation, and the same will be the case whenever the Young diagram contains 3 rows.
(If the Young diagram contains more than 3 rows, then the corresponding representation
will even vanish since ΛnV ∼= 0 for n > 3, see the comment above.) Thus we conclude
that the Young diagrams that will label the irreducible representations of sl(3,C) are
precisely those that have at most 2 rows. In fact, the correspondence between these
Young diagrams and the sl(3,C) representations is simply

Young diagram with row lengths (r1, r2) ←→ [a, b] = [r1 − r2, r2] . (5.4.22)

Incidentally, an analogous description is also available for sl(2,C). In this case, we
only consider Young diagrams with at most 1 row, and then the correspondence is simply
that the Young diagram with n horizontal boxes corresponds to the representation V (n).
As we shall see soon, this description in fact generalises to all sl(N,C) algebras.

It is also not very surprising that we can now describe various properties of the sl(3,C)
representations in terms of combinatorial data of the corresponding Young diagrams. For
example, the dimension of the sl(3,C) representation associated to the Young diagram Y
equals

dimsl(3,C)(Y ) = number of Young tableau fillings of Y with integers {1, 2, 3}. (5.4.23)
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So for example, we then have

dimsl(3,C)( ) = 3 1 , 2 , 3 , (5.4.24)

and

dimsl(3,C)( ) = 3

1
2 ,

1
3 ,

2
3 , (5.4.25)

as well as

dimsl(3,C)( ) = 6 1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3 , (5.4.26)

etc. More generally (see exercise), using the identification (5.4.22), we find that

dim([a, b]) =
1

2
(a+ 1)(b+ 1)(a+ b+ 2) . (5.4.27)

Again, the corresponding statement then also holds for the case of sl(2,C); there we
have instead

dimsl(2,C)(Y ) = number of Young tableau fillings of Y with integers {1, 2}. (5.4.28)

Since we can only put 1s and 2s into these boxes, and since once we have put the first
2, all the boxes to the right of it have to be filled with 2s, it follows that there are n+ 1
such fillings if the Young diagram has n boxes, i.e.,

dimsl(2,C)(V
(n)) = n+ 1 , (5.4.29)

in agreement with what we had before.

The other very nice property one can read off from this Young diagram description,
concerns the structure of the Clebsch-Gordan series, i.e., the behaviour of the representa-
tions under tensor products. (Let us first explain this for sl(3,C), and then describe how
the (obvious) generalisation for sl(2,C) reproduces what we have found before.) Suppose
we want to consider the tensor product of the representation W associated to the Young
diagram Y with the 3-dimensional fundamental representation V that corresponds to a
the Young diagram consisting of a single box; the general case (where V is not the funda-
mental representation but rather labelled by a more complicated Young diagram), can be
described similarly, but is more complicated. Then the tensor product is the direct sum of
representations that are associated to those Young diagrams one can obtain from Y upon
attaching a single box — the box corresponding to V — to the given Young diagram in a
way that is allowed by the usual Young diagram rules. In addition, any complete column
of 3 boxes is simply removed. So the tensor products are then for example

⊗ = ⊕ , (5.4.30)
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thereby reproducing (5.3.2). Similarly, we have

⊗ = ⊕ , (5.4.31)

and

⊗ = ⊕ ∼= ⊕ 1 , (5.4.32)

where we have used, in the last step, the fact that the a column of 3 boxes is simply
removed. Note that these tensor product rules at least respect the dimension formula,
since we have

dimsl(3,C)( ) = 6 , dimsl(3,C)( ) = 3 , dimsl(3,C)( ) = 8 , dimsl(3,C)( ) = 10 .
(5.4.33)

Thus (5.4.31) corresponds, on the level of dimensions, to the identity

6× 3 = 10 + 8 , (5.4.34)

while for the case of (5.4.31) we have

3× 3 = 8 + 1 . (5.4.35)

We should also mention in passing that (5.4.19) reflects the dimension identity

33 = 27 = 10 + 2 · 8 + 1 . (5.4.36)

For the case of sl(2,C), the corresponding rule is then simply that the tensor product
with the 2-dimensional fundamental representation corresponds to adding the box to the
n horizontal boxes of V (n) in one of the two possible ways, i.e., as

⊗ = ⊕ ∼= ⊕ , (5.4.37)

where in the second step we have now removed the full column of 2 boxes; translated into
the previous conventions, this is then just the tensor product rule

V (n) ⊗ V (1) = V (n+1) ⊕ V (n−1) , (5.4.38)

see eq. (4.3.5).
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6 General simple Lie algebras

As we said before once the analysis of the representation theory of sl(3,C) is understood,
the analysis of the representations of any simple Lie algebra g will be clear, at least in
outline. In the following we would like to explain how this analysis works. We shall
then specify more specifically how the resulting structure can be described for the case of
sl(N,C), and what the main features of the other simple Lie algebras are.

6.1 The general analysis

Given any simple Lie algebra g, the first step consists of finding an abelian subalgebra
h ⊂ g that acts diagonally on any (finite-dimensional) representation of g. For the case
of sl(2,C), h is simply the subalgebra generated by H, while for the case of sl(3,C) it is
the subalgebra generated by H12 and H23. For the case of matrix algebras, we can always
think of h as being spanned by the diagonal matrices (that clearly commute with one
another). As before for the case of sl(3,C), we want to organise the whole Lie algebra in
terms of eigenvectors of h. Thus, in order for this to be as useful as possible, we should
take h to be a maximal abelian subalgebra of g; such a subalgebra is then called a
Cartan subalgebra.

The choice of a Cartan subalgebra is obviously not unique, but different choices only
differ in some inconsequential manner — they are related to one another by the action
of the group (the adjoint representation) — and we therefore need not worry about this
problem. We should mention that the dimension of h is called the rank of g; so sl(2,C)
has rank 1, while sl(3,C) has rank 2.

Once we have found a Cartan subalgebra, we can decompose the whole adjoint rep-
resentation under the action of h. By assumption, the action of h on g is diagonalisable,
and thus we can decompose g as

g = h ⊕
⊕
α

gα , (6.1.39)

where the action of h preserves each gα, and acts on it by scalar multiplication by the
linear functional α ∈ h∗. This is to say, for any H ∈ h and any X ∈ gα, we have

[H,X] = α(H) ·X . (6.1.40)

The second direct sum in (6.1.39) is over a finite set of eigenvalues α ∈ h∗; these eigenvalues
are called the roots of the Lie algebra g, and the corresponding eigenspaces are called
root spaces. Of course, h itself is just the eigenspace for the action of h corresponding
to the eigenvalue 0, so in some contexts it is convenient to adapt the notation g0 = h.
However, usually we will not count 0 ∈ h∗ as a root. The set of all roots will be denoted
by ∆ ⊂ h∗. We also recall that, by the fundamental calculation, the adjoint action of gα
carries gβ into gα+β, i.e.

[gα, gβ] ⊂ gα+β . (6.1.41)
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Since the whole Lie algebra g is finite dimensional, each root space gα is finite-
dimensional; in fact, it turns out that every gα is one-dimensional. We also note
that since h has dimension r = dim(h), each root α is an r-dimensional vector. The root
lattice ΛR ⊂ h∗ that is generated by these roots is thus a sublattice of Rr; in fact, it turns
out to have maximal rank, i.e., it is a lattice of rank r. Furthermore, one finds that ∆ is
symmetric about the origin, i.e., if α ∈ ∆, then −α ∈ ∆. These statements are just the
obvious generalisation of the corresponding observations for sl(2,C) and sl(3,C); they are
true for any simple Lie algebra, but we shall not attempt to prove this in generality here.

6.1.1 Representation theory

Next we want to understand the general structure of the representation theory of g. Sup-
pose then that V is a finite-dimensional irreducible representation of g. By assumption,
the generators of the Cartan subalgebra h act diagonalisably on V , so we can write

V =
⊕
α

Vα , (6.1.42)

where the direct sum runs over a finite set of α ∈ h∗, and h acts diagonally on each Vα by
multiplication by the eigenvalue α, i.e., for any H ∈ h and v ∈ Vα, we have

H(v) = α(H) · v . (6.1.43)

The eigenvalues α ∈ h∗ that appear in this direct sum decomposition are called the
weights of V ; the Vα are called the weight spaces, and the dimension of a weight
space Vα will be called the multiplicity of the weight α in V . Again, each weight is an
r-dimensional vector, where r = rank(g) = dim(h).

The action of the rest of the Lie algebra on V can again be described in these terms:
for any root β ∈ ∆ we have (again by the fundamental calculation)

gβ : Vα → Vα+β . (6.1.44)

Thus it follows that all the weights of an irreducible representation are congruent to one
another modulo the root lattice ΛR; otherwise, for any weight α of V , the subspace

V ′ =
⊕
β∈ΛR

Vα+β (6.1.45)

would be a proper subrepresentation of V .

To understand precisely which weights appear in a representation, it is again useful to
find distinguished subalgebras sα ∼= sl(2,C) ⊂ g. Recall that each gα is one-dimensional,
and that for each α ∈ ∆, also −α ∈ ∆. Furthermore, by the fundamental calculation, we
know that [gα, g−α] ⊂ g0

∼= h. Thus we have a three-dimensional subalgebra of g spanned
by

sα : gα ⊕ g−α ⊕ [gα, g−α] , (6.1.46)
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and it turns out that sα ∼= sl(2,C); we denote the corresponding generators by Eα ∈ gα,
Fα ∈ g−α and Hα = [Eα, Fα] with [Hα, Eα] = 2Eα as well as [Hα, Fα] = −2Fα.

Then we can again use the representation theory of sl(2,C) to conclude that the
eigenvalues of Hα ∈ h have to be integer. Thus every eigenvalue β ∈ h∗ that appears
in any representation V must be such that β(Hα) ∈ Z. Let us denote the set of linear
functionals β ∈ h∗ that are integer valued on all Hα by ΛW ; ΛW is a lattice that is called
the ‘weight lattice’ of g, and all weights that appear in any representation of g must lie in
ΛW . Obviously, by construction (since the adjoint representation is also a representation),
ΛR ⊂ ΛW . In fact, since both lattices have rank r, ΛR is a finite index sublattice of ΛW ,
i.e., the quotient space

ΛW/ΛR = Z (6.1.47)

is a finite group. This group can actually be identified with the center of the (simply-
connected) Lie group G associated to g.

Next, we want to find a convenient description of the different irreducible representa-
tions of g. To this end, we need again to define a suitable ordering on the set of roots.
We choose a real linear functional l on the root space that is irrational with respect to
the root lattice ΛR. Then we get a decomposition of the roots into

∆ = ∆+ ∪∆− , (6.1.48)

where the positive roots in ∆+ are those roots α for which l(α) > 0, while the negative
roots β ∈ ∆− satisfy l(β) < 0. The point of choosing a direction — and thereby an
ordering of the roots into positive and negative roots — is, of course, to mimic the notion
of highest weight vector that was so crucial in the analysis for sl(2,C) and sl(3,C).
(Obviously, as became clear for the case of sl(3,C), there is some arbitrariness in making
this decomposition, but this is again largely irrelevant — so from now on we shall assume,
that one such choice has been made.)

Suppose now that V is an irreducible finite-dimensional representation of g. Then it
contains a highest weight vector v ∈ V that is an eigenvector of h and annihilated
by all positive roots, i.e., by all elements in gα for α ∈ ∆+. In fact, if V is irreducible,
the corresponding weight space is one-dimensional, i.e., the full irreducible representation
V is obtained by the action of the negative roots, starting from a single highest weight
vector. The weight of the highest weight vector will be called the highest weight of the
corresponding representation, and it characterises it uniquely.

The highest weight of any irreducible representation obviously lies in the weight lattice
ΛW of g, but even more is true. In order to explain the relevant constraint in detail, let us
choose a set of so-called simple (positive) roots so that any positive root is a non-negative
integer linear combination of the simple roots. (For example, for the case of sl(3,C), for
which we can take the positive roots to be E12, E23 amd E13, the simple roots are E12

and E23 since the corresponding root vectors L1 − L2 and L2 − L3 generate in particular
also the root vector of E13, L1−L3 = (L1−L2) + (L2−L3).) In general there are always
r = rank(g) simple roots and they form a basis for the root lattice. We shall denote them
by αi, i = 1, . . . , r.
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Then we consider the sl(2,C) algebras associated to the simple roots, i.e., the analogues
of sL1−L2 and sL2−L3 above. Since the highest weight β is in particular a highest weight
for all of these sl(2,C) algebras, it follows that β has the property that

β(Hi) ∈ N0 , (6.1.49)

where Hi is the (canonically normalised) Cartan generator of the sl(2,C) associated to
αi and −αi. (So if we denote the corresponding Lie algebra generators by Ei ∈ gαi and
Fi ∈ g−αi then Hi = [Ei, Fi] with [Hi, Ei] = 2Ei and [Hi, Fi] = −2Fi.)

The simplest representations are those for which all but one β(Hi) = 0, with the
remaining one equal to β(Hj) = 1. They are called the fundamental weights, and we
denote them by ωj, j = 1, . . . , r, with

ωj(Hi) = δij . (6.1.50)

The most general highest weight can then be written as a non-negative integer linear
combination of these fundamental weights,

β =
r∑
i=1

mi ωi . (6.1.51)

Thus the irreducible representations of g are parametrised by r-tuples of non-negative
integers [m1, . . . ,mr]; the integers mi are then called the Dynkin labels of the highest
weight representation with highest weight β.

6.2 The case of sl(N,C)

Let us flesh out these ideas for the case of sl(N,C), i.e., the complexification of the Lie
algebra su(N). Given that sl(N,C) is a matrix algebra, a natural choice for the Cartan
subalgebra is

h =

{
N∑
i=1

aiHi |
∑
i

ai = 0

}
, (6.2.52)

where Hi is the diagonal matrix whose only non-zero entry is a 1 in the (ii) position. In
particular, it is clear from this that dim(h) = N − 1, so sl(N,C) has rank r ≡ N − 1.

As for the case of sl(3,C), let us define the element Li ∈ h∗ by Li(Hj) = δij. Then it
is easy to see that the roots of sl(N,C) are described by the differences Li − Lj, where
i 6= j. (Indeed, the matrix whose only non-zero entry is in the (ij) position has this
weight under the adjoint action of h.) As a consequence, the root lattice can therefore be
described as

ΛR =

{
N∑
i=1

aiLi | ai ∈ Z ,
∑
i

ai = 0

}
. (6.2.53)

Note that ΛR is indeed a lattice of rank r = N − 1.

71



Next, we want to describe the weight lattice of sl(N,C). In order to understand
the relevant integrality conditions, we observe that the algebra sα with α = Li − Lj is
generated by

Eij , Eji , [Eij, Eji] = Hi −Hj . (6.2.54)

Any weight that appears in a representation of sl(N,C) must therefore have integer eigen-
value with respect to Hi −Hj, and this is the only condition; thus we conclude that the
weight lattice of sl(N,C) is

ΛW =

{
N∑
i=1

aiLi | ai ∈ Z

}
/
〈∑

i

Li

〉
, (6.2.55)

where the quotient is a consequence of the fact that
∑

i Li = 0 in h∗. Note that

ΛW/ΛR = ZN ; (6.2.56)

modulo ΛR, the weight lattice is generated by L1, say (since any other Li = (Li−L1)+L1),
and we have the relation that

NL1 =
N∑
i=1

(L1 − Li) +
N∑
i=1

Li ∈ ΛR . (6.2.57)

We can introduce an ordering on the roots by saying that the root Li − Lj is positive
(negative) if i < j (i > j). Then the simple roots are

αi = Li − Li+1 , i = 1, . . . , N − 1 , (6.2.58)

and the fundamental weights turn out to be

ωi = L1 + · · ·+ Li =
i∑

j=1

Lj , (6.2.59)

where i = 1, . . . , N − 1.
The fundamental (defining) N -dimensional representation V of sl(N,C) corresponds

to the fundamental weight ω1 = L1, i.e., the Dynkin label [1, 0, . . . , 0]. The conjugate
representation has weight α = −LN = ωN−1−

∑N
j=1 Lj; thus it corresponds to the Dynkin

label [0, 0, . . . , 0, 1]. As for the case of sl(3,C), any irreducible representation of sl(N,C)
occurs in a suitable tensor product of the fundamental N -dimensional representation V .
As before for the case of sl(2,C) and sl(3,C), SM commutes with the action of sl(N,C)
on V ⊗M , and forms indeed a dual pair. Thus we can label the representations of sl(N,C)
by Young diagrams. Furthermore, since

ΛNV ∼= C (6.2.60)
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is the trivial representation of sl(N,C), the Young diagrams that occur for sl(N,C) are
those that do not contain any columns of length N (or greater). In fact, we find that the
correspondence between Young diagrams and Dynkin labels is simply(

Young diagram with row length ri, i = 1, . . . , N − 1
)
↔ [r1 − r2, r2 − r3, . . . , rN−1] .

(6.2.61)
Thus the fundamental representation corresponds again to the Young diagram , with
r1 = 1, rj = 0 for j ≥ 2. On the other hand, the conjugate representation of the
fundamental representation has r1 = r2 = · · · = rN−1 = 1, and hence corresponds to the
Young diagram with only one column of length N − 1.

As for the case of sl(2,C) and sl(3,C) there are now simple dimension formulae for
these representations; in fact, we have the natural generalisation of (5.4.23)

dimsl(N,C)(Y ) = number of Young tableau fillings of Y with integers {1, 2, . . . , N}.
(6.2.62)

So for example, we have

dimsl(N,C)( ) = N , dimsl(N,C)( ) = N(N+1)
2

, dimsl(N,C)( ) = N(N−1)
2

, (6.2.63)

as well as

dimsl(N,C)( ) =
N∑
j=1

(N + 1− j)(N − j) =
1

3
(N3 −N) , (6.2.64)

and

dimsl(N,C)( ) =
N∑
j=1

N∑
i=j+1

(N − i) =
1

6
N(N − 1)(N − 2) , (6.2.65)

etc. Furthermore, the tensor product decomposition rules can be read off from the corre-
sponding Young diagrams; so for example, we have again

⊗ = ⊕ , (6.2.66)

which in terms of dimensions is just the formula

N2 =
N(N + 1)

2
+
N(N − 1)

2
. (6.2.67)

Similarly we have

⊗ = ⊕ , (6.2.68)

which in terms of dimensions corresponds to

N
N(N − 1)

2
=

1

3
(N3 −N) +

1

6
N(N − 1)(N − 2) , (6.2.69)
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etc. We should also mention that the adjoint representation appears in V ⊗ V ∗, and thus
corresponds to the Young diagram with row labels r1 = 2, r2 = · · · = rN−1 = 1, i.e., to
the Dynkin label [1, 0, . . . , 0, 1]. In order to calculate its dimension we note that the box
in the top left corner can either be filled by 1 or 2 only; if it is filled with 2, then the
remaining boxes along the first column are uniquely fixed to be 3, 4, . . . , N , while there
are N − 1 choices for the second box in the first row. On the other hand, if the box in
the top left corner is filled by a 1, there are N different choices for filling the second box
in the first row, and N − 1 different choices for filling the boxes along the first column.
Altogether we therefore conclude that

dimsl(N,C)(adj) = N(N − 1) + (N − 1) = N2 − 1 , (6.2.70)

in agreement with what we had before.

6.3 Other simple Lie algebras

The simple complex Lie algebras have been classified, and apart from the sl(N,C) series
we have studied above, there are two (or rather really three) more infinite series, as well
as a number of isolated (or exceptional) Lie algebras. The other two infinite families
correspond to the complexifications of the Lie algebras

so(N) , and sp(2N) , (6.3.71)

while the exceptional Lie algebras are denoted by

g2 , f4 , e6 , e7 , e8 . (6.3.72)

(Here the index always denotes the rank of the relevant Lie algebra.) Actually, the struc-
ture of the so(N) algebras depends fairly crucially on the cardinality of N , so they really
form two separate families corresponding to so(2N) and so(2N − 1). In the mathematics
literature, the corresponding Lie algebras are denoted by

aN−1
∼= sl(N,C) , dN ∼= so(2N)C , (6.3.73)

as well as
bN ∼= so(2N + 1)C , cN ∼= sp(2N)C . (6.3.74)

There are some low-level identifications, i.e.,

d2
∼= a1 ⊕ a1 , d3

∼= a3 , (6.3.75)

as well as
b1
∼= c1

∼= a1 , b2
∼= c2 , (6.3.76)

but for larger values of N , these algebras are all inequivalent. For all of these algebras,
the roots, as well as the root and weight lattices are known, and hence the representation
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theory is very well understood — explicit descriptions are for example given in the book
of [FH].

The algebras corresponding to the a, d and e cases are in some sense simpler since
they are simply-laced. In order to explain what this means, recall that the Killing form
induces a natural inner product on h, and therefore also on its dual space h∗; in particular,
since all of these Lie algebras are simple, we may simply take the Killing form to be the
(suitably normalised) trace in the fundamental representation. For example, for the case
of the sl(N,C) algebras, the inner product is just given by — remember that Hi is the
matrix with a single 1 in (ii) position, and Li is the natural dual vector

(Li, Lj) = δij . (6.3.77)

The roots of sl(N,C) are of the form Li−Lj with i 6= j, and thus we note that the length
squared of each root is the same, namely equal to 2. Algebras for which this is the case,
i.e., for which the length squared of every root is the same — after a suitable rescaling
this length squared is conventionally taken to be equal to 2 — are called simply-laced.

Actually, we can characterise the Lie algebra completely by its roots, together with
this inner product. In fact, we don’t even need to specify all roots, but it is enough to
consider the simple roots. (Recall that the simple roots have the property that (i) they
generate the whole root lattice; and (ii) the positive roots — we assume we have made
some choice of splitting the roots into positive and negative roots — are precisely non-
negative integer combinations of the simple roots.) For example, for the case of sl(N,C),
with the choice of positive roots above, the (positive) simple roots are, see (6.2.58)

αi = Li − Li+1 , i = 1, . . . , N − 1 . (6.3.78)

Note that there are precisely r = rank(g) simple roots. Instead of the inner products it
is convenient to determine the so-called Cartan matrix which is defined by

Cij =
2(αi, αj)

(αi, αi)
. (6.3.79)

Note that, in the simply laced case and with the standard normalisation of the inner
product, the Cartan matrix is just equal to Cij = (αi, αj); for the case of sl(N,C) (or
more specifically sl(7,C)) it takes the form

C =


2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

 . (6.3.80)

In terms of this notation, the correct integrality condition for the weights is then that
they live in the lattice

ΛW =
{
x ∈ Rr :

2 (x, αi)

(αi, αi)
∈ Z , ∀i = 1, . . . , r

}
. (6.3.81)
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For the simply-laced case (where (αi, αi) = 2), the weight lattice is then simply the dual
lattice ΛW = Λ∗R; it is generated by the fundamental weights ωi that are characterised by

(ωi, αj) = δij . (6.3.82)

For the case of sl(N,C), the fundamental weights can be taken to be (compare with
(6.2.59))

ωi =
i∑

j=1

Li −
i

N

N∑
j=1

Lj , i = 1, . . . , N − 1 , (6.3.83)

where the last term is subtracted so as to ensure that also ωi is orthogonal to
∑

j Lj. The
inner product matrix of the fundamental weights is then the inverse of the Cartan matrix.
The highest weight of a representation can be written in terms of a non-negative integer
linear combination of the fundamental weights,

λ =
r∑
i=1

miωi . (6.3.84)

The [m1, . . . ,mr] are then the Dynkin labels of the representation λ.

It turns out that the Cartan matrix determines the Lie algebra uniquely. In fact, since
most of the entries of the Cartan matrix are actually zero, one can capture the whole
information contained in the Cartan matrix more conveniently in terms of a so-called
Dynkin diagram. To this end one draws a vertex for each simple root, and connects
two vertices by max{|Cij|, |Cji|} lines. Furthermore — this only happens in the non
simply-laced case — an arrow is added to the lines from the simple root i to the simple
root j if |Cij| > |Cji| > 0. So, for the case of the sl(N,C) algebras, the Dynkin diagram
is simply described by

an:

since there is just a single line between αi and αi+1. The Dynkin diagrams for the other
simply-laced Lie algebras are

dn:

as well as

e6:

e7:
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e8:

For completeness, we also give the Dynkin diagrams for the non simply-laced algebras
(where instead of drawing an arrow the convention is that the arrow is from the unfilled
vertex to the filled vertex); they are

bn:

cn:

g2:

f4:

For the dn case, the root lattice can be taken to be of the form

ΛR =
{ n∑
i=1

niei :
∑
i

ni ∈ 2Z
}
, (6.3.85)

where the ei form an orthonormal basis with respect to the inner product (that is obtained
from the Killing form). The simple roots may then be taken to be of the form

αi = ei − ei+1 , i = 1, . . . , n− 1 , αn = en−1 + en . (6.3.86)

One easily checks that the corresponding Cartan matrix is then described by the above
Dynkin diagram. The other roots are then simply of the form

±ei ± ej , (i < j) , (6.3.87)

and thus there are

number of roots of dn = so(2n) = 4 ·
(
n

2

)
= 2n(n− 1) . (6.3.88)

Together with the n elements of the Cartan matrix we therefore obtain for the dimension
of dn = so(2n)

dim(so(2n)) = n+ 2n(n− 1) = n(2n− 1) =
(2n)(2n− 1)

2
. (6.3.89)

The corresponding fundamental weights are

ωi =
i∑

j=1

ej , i = 1, . . . , n− 2 , (6.3.90)
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as well as

ωn−1 =
1

2

(n−1∑
j=1

ej − en

)
, ωn =

1

2

(n−1∑
j=1

ej + en

)
. (6.3.91)

Obviously, the root lattice is again a sublattice of the weight lattice, and the quotient
group is

ΛW/ΛR
∼=
{

Z4 if n = 2m+ 1, m ∈ N
Z2 × Z2 if n = 2m, m ∈ N.

(6.3.92)

In particular, 2ω1 ∈ ΛR, and 2ωn−1 ∈ ΛR if n = 2m, while 2ωn−1
∼= ω1 modulo ΛR if

n = 2m+ 1.

The exceptional Lie algebra e6 contains so(10) ⊕ u(1) as a subalgebra; in particular,
the simple roots of e6 may be taken to consist of the simple roots of so(10),

α1 = (1,−1, 0, 0, 0, 0) , α2 = (0, 1,−1, 0, 0, 0) , α3 = (0, 0, 1,−1, 0, 0) ,

α4 = (0, 0, 0, 1,−1, 0) , α5 = (0, 0, 0, 1, 1, 0) , (6.3.93)

together with

α6 =
(
−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,

√
3

2

)
. (6.3.94)

Note that all of these roots have length squared two, and they give rise to the above Dynkin
diagram for e6. The Lie algebra of e6 has dimension dim(e6) = 78; indeed, in addition
to the 6-dimensional Cartan subalgebra, the Lie algebra has 72 roots — these are just
the vectors of length squared two in the lattice generated by α1, . . . , α6. In fact, e6 is the
extension of the Lie algebra so(10)⊕ u(1) of dimension dim(so(10)⊕ u(1)) = 45 + 1 = 46
by the two 16-dimensional spinor representations of so(10); in the above language the
corresponding roots are given by the 32 vectors of the form[(

±1

2

)5

, (−1)δ+1

√
3

2

]
, δ = no. minus signs among the first five 1

2
. (6.3.95)

The center of the corresponding simply-connected Lie group is

e6 : ΛW/ΛR
∼= Z3 . (6.3.96)

The exceptional Lie algebra e7 contains so(12) ⊕ u(1) as a subalgebra; in particular,
the simple roots of e7 may be taken to consist of the simple roots of so(12),

α1 = (1,−1, 0, 0, 0, 0, 0) , α2 = (0, 1,−1, 0, 0, 0, 0) , α3 = (0, 0, 1,−1, 0, 0, 0) ,

α4 = (0, 0, 0, 1,−1, 0, 0) , α5 = (0, 0, 0, 0, 1,−1, 0) , α6 = (0, 0, 0, 0, 1, 1, 0) ,

together with

α7 =
(
−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,

√
2

2

)
. (6.3.97)
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Again, all of these roots have length squared two, and they give rise to the above Dynkin
diagram for e7. The Lie algebra e7 has dimension dim(e7) = 133, and the center of the
corresponding simply-connected Lie group is

e7 : ΛW/ΛR
∼= Z2 . (6.3.98)

Finally, the exceptional Lie algebra e8 contains d8 = so(16); indeed the root lattice of
e8 is obtained from that of d8 upon adjoining the ‘spinor weight’

ω8 = ( 1
2
, . . . , 1

2︸ ︷︷ ︸
8 terms

) . (6.3.99)

Note that the length squared of this vector is also 8 × 1
4

= 2. The resulting root lattice
is actually even (the length squared of any vector is even), and self-dual, i.e., the weight
lattice (which is the dual of the root lattice) coincides with the root lattice; as a conse-
quence the center of the associated simply-connected Lie group is trivial. The Lie algebra
e8 has dimension dim(e8) = 248.

We may mention in passing that the root lattice of e8 is in fact the only even self-dual
lattice in euclidean dimension 8. Even self-dual lattices in euclidean signature only exist
in dimensions that are multiples of 8; in 16 dimensions there are 2 even self-dual lattices,
the lattice ΛR(e8) ⊕ ΛR(e8) as well as the root lattice of ΛR(d16) extended by a spinor
weight. In 24 dimensions, there are 24 even self-dual lattices, the 23 Niemeier lattices as
well as the Leech lattice. The Leech lattice plays an important role, for example, in finite
group theory, Monstrous Moonshine, etc.
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