FORMULAE
 Version July, 2017
 Probability and Statistics 401-2604-00, Spring 2017

1. Standard discrete distributions

(1) Bernoulli distribution with success parameter $p \in(0,1) . X \in\{0,1\}$ and

$$
P(X=1)=p, \quad E X=p, \quad \operatorname{Var}(X)=p(1-p)
$$

(2) Binomial distribution with n trials and success parameter $p \in(0,1)$. $X \in\{0,1, \ldots, n\}$

$$
\begin{gathered}
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots n \\
E X=n p, \quad \operatorname{Var}(X)=n p(1-p)
\end{gathered}
$$

(3) Poisson distribution with parameter $\lambda>0 . X \in\{0,1, \ldots\}$

$$
\begin{gathered}
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1, \ldots, \\
E X=\lambda, \quad \operatorname{Var}(X)=\lambda
\end{gathered}
$$

2. Standard continuous distributions

(4) Gaussian distribution with mean μ and variance $\sigma^{2} . X \in \mathbb{R}$,

$$
f_{X}(x):=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right], \quad x \in \mathbb{R}
$$

Denoted by $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\begin{gathered}
E X=\mu, \operatorname{var}(X)=\sigma^{2} \\
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \Leftrightarrow \quad Z:=\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1) .
\end{gathered}
$$

$\mathcal{N}(0,1)$ is called the standard normal (or Gaussian).
(5) The standard normal distribution function.

$$
\Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-z^{2} / 2} d z, \quad x \in \mathbb{R}
$$

Let Φ^{-1} be its inverse function. Then,

$$
\Phi^{-1}(0.9)=1.28, \quad \Phi^{-1}(0.95)=1.64, \quad \Phi^{-1}(0.975)=1.96
$$

(6) Exponential distribution with parameter $\lambda>0 . X \in \mathbb{R}_{+}:=[0, \infty)$,

$$
\begin{gathered}
f_{X}(x)=\frac{1}{\lambda} e^{-x / \lambda}, \quad x \geq 0 \\
E X=\lambda, \quad \operatorname{Var}(X)=\lambda^{2}
\end{gathered}
$$

Note: in many textbooks λ is replaced by $1 / \lambda$.
(7) Gamma distribution with parameters $\alpha, \lambda . X \in \mathbb{R}_{+}:=[0, \infty)$,

$$
f_{X}(x)=\frac{1}{\lambda^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \lambda}, \quad x \geq 0
$$

Here $\Gamma(\alpha)$ is the Gamma function and for integer values $\Gamma(m)=(m-1)$!.

$$
E X=\alpha \lambda, \quad \operatorname{Var}(X)=\alpha \lambda^{2}
$$

Note: in many textbooks λ is replaced by $1 / \lambda$.
(8) Beta distribution with parameters $r, s . X \in[0,1]$,

$$
\begin{gathered}
f_{X}(x)=\frac{\Gamma(r+s)}{\Gamma(r) \Gamma(s)} x^{r-1}(1-x)^{s-1}, \quad x \in[0,1] . \\
E X=\frac{r}{r+s}, \quad \operatorname{Var}(X)=\frac{r s}{(r+s)^{2}(1+r+s)} .
\end{gathered}
$$

(9) Chi-Square $\left(\chi^{2}\right)$ distribution.

The χ^{2} distribution with m degrees of freedom is the Gamma distribution with parameters $\alpha=m / 2, \lambda=2$. Denoted by $\chi^{2}(m)$. In particular,

$$
\begin{gathered}
X \sim \mathcal{N}(0,1) \quad \Rightarrow \quad X^{2} \sim \chi^{2}(1) \\
X_{j} \sim \mathcal{N}(0,1), j=1, \ldots, m, \text { i.i.d. } \quad \Rightarrow \quad \sum_{j=1}^{m} X_{j}^{2} \sim \chi^{2}(m),
\end{gathered}
$$

(10) Student distribution.

If $Z \sim \mathcal{N}(0,1), Y \sim \chi^{2}(m), Z \perp Y$, then,

$$
T:=\frac{Z}{\sqrt{Y / m}}
$$

has a student distribution with m degrees of freedom.
Its density is given by

$$
f_{T}(t)=\frac{\Gamma((m+1) / 2)}{\sqrt{m \pi} \Gamma(m / 2)}\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2}, \quad t \in \mathbb{R}
$$

(11) Studentizing. Let $\left\{X_{i}\right\}_{i=1}^{n}$ be i.i.d. with $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution. Let $\bar{X}_{n}:=$ $\sum_{i=1}^{n} X_{i} / n$ and set

$$
S_{n}^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

Then, $\bar{X}_{n} \perp S_{n}^{2}$ and

$$
\frac{\sqrt{n}\left[\bar{X}_{n}-\mu\right]}{S_{n}}
$$

has a Student distribution with $n-1$ degrees of freedom.

3. Borel-Cantelli

(12) Infinitely often, i.o.. For a given countable sequence of events $\left\{A_{n}\right\}_{n=1}^{\infty}$, the set $\left\{A_{n}\right.$ i.o. $\}$ is defined by

$$
\left\{A_{n} \text { i.o. }\right\}:=\cap_{n=1}^{\infty} \cup_{m=n}^{\infty} A_{m}
$$

(13) Borel-Cantelli Lemma 1. Suppose that $\left\{A_{n}\right\}_{n=1}^{\infty}$ satisfy

$$
\sum_{n} P\left(A_{n}\right)<\infty
$$

Then, $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=0$.
(14) Borel-Cantelli Lemma 2. Suppose that $\left\{A_{n}\right\}_{n=1}^{\infty}$ are mutually independent and satisfy

$$
\sum_{i} P\left(A_{n}\right)=\infty
$$

Then, $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=1$.

4. Limit theorems

(15) Law of Large Numbers. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be an i.i.d. sequence. Set $\mu:=E X_{i}$, $\sigma^{2}:=\operatorname{Var}\left(X_{i}\right)<\infty$ for any i, and

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Then the weak law of large numbers states that \bar{X}_{n} converges to μ in probability and the strong law states that the convergence is almost surely.
(16) Central Limit Theorem. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be an i.i.d. sequence. Set $\mu:=E X_{i}$, $\sigma^{2}:=\operatorname{Var}\left(X_{i}\right)<\infty$ for any i, and $\bar{X}_{n}:=\sum_{i=1}^{n} X_{i} / n$. Let

$$
Z_{n}:=\frac{\sqrt{n}}{\sigma}\left[\bar{X}_{n}-\mu\right]
$$

The distribution of Z_{n} converges to the standard Gaussian, i.e., for all $z \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} P\left(Z_{n} \leq z\right)=\Phi(z)
$$

where Φ is the standard normal distribution function.

5. Inequalities

(17) Jensen's Inequality. For a convex function $g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
g(E X) \leq E g(X)
$$

(18) Markov's Inequality. For a non-negative random variable X and constant $a>0$

$$
P(X \geq a) \leq \frac{E X}{a}
$$

Generalized Chebyshev's Inequality. For a random variable $X \in \mathbb{R}$ and a non-negative increasing function g and a real number a with $g(a)>0$,

$$
P(X \geq a) \leq \frac{E g(X)}{g(a)}
$$

6. Moments

(19) Variance and Standard Deviation.

$$
\begin{aligned}
& \text { variance of } \mathrm{X}=\operatorname{Var}(X):=E X^{2}-(E X)^{2}=E(X-E X)^{2}, \\
& \text { standard deviation of } \mathrm{X}=\sigma_{X}:=\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

(20) Covariance and Correlation.

$$
\begin{aligned}
\text { covariance of } \mathrm{X} \text { and } \mathrm{Y}=\operatorname{Cov}(X, Y): & =E X Y-(E X)(E Y) \\
& =E(X-E X)(Y-E Y), \\
\text { correlation of } \mathrm{X} \text { and } \mathrm{Y}=\operatorname{Corr}(X, Y) & :=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \in[-1,1] .
\end{aligned}
$$

We have

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

(21) Moment Generating Function. The moment generating function of a random variable X is

$$
\Psi(t):=\mathbb{E}\left[e^{t X}\right], \quad t \in \mathbb{R}
$$

The value of $\Psi(t)$ could be $+\infty$. When it is finite for t near the origin,

$$
E X^{k}=\frac{d^{k}}{d t^{k}} \Psi(0), k=1,2, \ldots
$$

7. Confidence interval for the mean of a normal distribution
(22) Two sided Confidence Interval. Let X_{1}, \ldots, X_{n} be i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and

$$
\bar{X}_{n}:=\sum_{i=1}^{n} X_{i} / n, S_{n}^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

Set

$$
\begin{aligned}
& A:=\bar{X}_{n}-T_{n-1}^{-1}(1-\alpha / 2) \frac{S_{n}}{\sqrt{n}} \\
& B:=\bar{X}_{n}+T_{n-1}^{-1}(1-\alpha / 2) \frac{S_{n}}{\sqrt{n}}
\end{aligned}
$$

where T_{m} is the c.d.f. of the Student distribution with m degrees of freedom, T_{m}^{-1} is its inverse function and $0<\alpha<1$. The interval (A, B) is a two sided $(1-\alpha)$-confidence interval for μ.
(23) One sided Confidence Interval. Let X_{1}, \ldots, X_{n} be i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and

$$
\bar{X}_{n}:=\sum_{i=1}^{n} X_{i} / n, S_{n}^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

Set

$$
\begin{aligned}
& \underline{A}:=\bar{X}_{n}-T_{n-1}^{-1}(1-\alpha) \frac{S_{n}}{\sqrt{n}} \\
& \underline{B}:=\bar{X}_{n}+T_{n-1}^{-1}(1-\alpha) \frac{S_{n}}{\sqrt{n}}
\end{aligned}
$$

where T_{m} is the c.d.f. of the Student distribution with m degrees of freedom, T_{m}^{-1} is its inverse function and $0<\alpha<1$.

The interval (\underline{A}, ∞) is an upper $(1-\alpha)$-confidence interval for μ. The interval $(-\infty, \underline{B})$ is a lower $(1-\alpha)$-confidence interval for μ.

8. Various

(24) Change of Variables Formula. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ have a continuous joint distribution $f_{X}(x)$ for $x \in \mathbb{R}^{n}$. Let $Y=A X$ for some non-singular square matrix A. Then, the probability distribution function of Y is given by

$$
f_{Y}(y)=\frac{1}{|\operatorname{det}(A)|} f_{X}\left(A^{-1} y\right), \quad y \in \mathbb{R}^{n}
$$

(25) Continuous Bayes Theorem. Consider two random variables X and θ, where θ has density $w(\cdot)$ and given $\theta=\vartheta$, the random variable X has density $f(x \mid \vartheta)$. Then the density of θ given $X=x$ is

$$
w(\vartheta \mid x)=\frac{f(x \mid \vartheta) w(\vartheta)}{f(x)}
$$

where

$$
f(x)=\int f(x \mid \vartheta) w(\vartheta) d \vartheta
$$

