Probability and Statistics

Exercise sheet 1

Exercise 1.1 We throw simultaneously two dices, one green and one red. Consider the following events:

- $W_{1}:=$ Neither of the dices has a result strictly greater than 2 .
- $W_{2}:=$ The green and the red one have the same number on them.
- $W_{3}:=$ The number on the green is 3 times the number on the red.
- $W_{4}:=$ The number on the red is by one greater than the number on the green one.
- $W_{5}:=$ The number of the green one is greater or equal than the number on the red one.
(a) Write a suitable space Ω where all of these events can be defined.
(b) Describe W_{i} as a subsets of Ω.
(c) If you were colorblind (you cannot differentiate green and red). How does the sample space Ω change? Which W_{i} can be defined in this space?

Exercise 1.2 You have an urn with $4 k$ balls. Each of these balls is numbered with a different number in $\{1, \ldots, 4 k\}$. At time j you take out one ball, look at its number and put it back. You repeat this experiment n times. Define

- $A_{j}:=$ The number taken out in the j-th time is bigger than $2 k$.
- $B_{j}:=$ The number taken out in the j-th time is even.
(a) Write in terms of $\left(A_{j}\right)_{j=1}^{n}$ and $\left(B_{j}\right)_{j=1}^{n}$ the following events

1. $A:=$ Between 1 and n there was never a number bigger than $2 k$.
2. $B:=$ Between 1 and n there was at least one even number.
3. $C:=$ The amount of balls bigger than $2 k$ is bigger or equal than the amount of even balls.
(b) Describe in words the following events
4. $\left(\bigcup_{j=1}^{n}\left(A_{j}\right)^{c}\right)^{c}$.
5. $\bigcup_{j=1}^{n-2}\left(A_{j} \cap A_{j+1} \cap B_{j+2}\right)$.
6. $\bigcup_{m=1}^{n} \bigcap_{j=m}^{n}\left(A_{j} \cap B_{j}\right)$.

Exercise 1.3 Let $\left(A_{j}\right)_{j=1}^{n}$ be events, $A_{j} \subset \Omega$ and for every event A, let $\mathbb{1}_{A}$ denote the indicator function of A, which is a function from Ω to $\{0,1\}$ such that $\mathbb{1}_{A}(w)=1$ if $w \in A$, and $\mathbb{1}_{A}(w)=0$ otherwise.
(a) Show that:

$$
\mathbb{1}_{\bigcup_{j=1}^{n} A_{j}}=1-\prod_{j=1}^{n}\left(1-\mathbb{1}_{A_{j}}\right),
$$

use it to prove that:

$$
\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right]=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \mathbb{P}\left[\bigcap_{j=1}^{k} A_{i_{j}}\right]
$$

(b) Using induction prove the following statements:

$$
\begin{aligned}
& \mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right] \leq \sum_{j=1}^{n} \mathbb{P}\left[A_{j}\right]-\sum_{j=1}^{n-1} \mathbb{P}\left[A_{j} \cap A_{j+1}\right] \\
& \mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right] \geq \sum_{j=1}^{n} \mathbb{P}\left[A_{j}\right]-\sum_{i, j=1, i<j}^{n} \mathbb{P}\left[A_{j} \cap A_{i}\right] .
\end{aligned}
$$

Exercise 1.4 Show the Multiplication Rule for Conditional Probabilities:
Suppose that $A_{1}, A_{2}, \ldots, A_{n}$ are events such that $\mathbb{P}\left(A_{1} \cap \cdots \cap A_{n-1}\right)>0$. Then

$$
\mathbb{P}\left(A_{1} \cap \cdots \cap A_{n}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2} \mid A_{1}\right) \cdots \mathbb{P}\left(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right)
$$

