Probability and Statistics

Exercise sheet 10

Exercise 10.1 Let $c>0$ and consider the loss function

$$
L(\theta, a)= \begin{cases}c|\theta-a| & \text { if } \theta<a \\ |\theta-a| & \text { if } \theta \geq a\end{cases}
$$

Assume that θ is a random variable with a continuous distribution.
(a) Let $a \leq q$ be two real numbers, show that

$$
\mathbb{E}[L(\theta, a)-L(\theta, q)] \geq(q-a)(\mathbb{P}[\theta \geq q]-c \mathbb{P}[\theta \leq q])
$$

and

$$
\mathbb{E}[L(\theta, a)-L(\theta, q)] \leq(q-a)(\mathbb{P}(a \leq \theta)-c \mathbb{P}(\theta \leq a))
$$

(b) Prove that a Bayes estimator of θ will be any $1 /(1+c)$ quantile of the posterior distribution of θ.

Exercise 10.2 Suppose that the number of defects in a 1200 -foot roll of magnetic recording tape has a Poisson distribution for which the value of the mean θ is unknown, and the prior distribution of θ is the gamma distribution with parameters $\alpha=3$ and $\beta=1$. When five rolls of this tape are selected at random and inspected, the numbers of defects found on the rolls are $2,2,6,0$ and 3 .
(a) What is the posterior distribution of θ ?
(b) If the squared error loss function is used, what is the Bayes estimate of θ ?

Exercise 10.3 Let $\alpha, \beta>0$, the probability density function of a beta distribution with parameters α and β is

$$
f(x \mid \alpha, \beta)= \begin{cases}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} & \text { for } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that X_{1}, \cdots, X_{n} form a random sample from the Bernoulli distribution with parameter θ, which is unknown $(0<\theta<1)$. Suppose also that the prior distribution of θ is the beta distribution with parameters $\alpha>0$ and $\beta>0$. Show that the posterior distribution of θ given that $X_{i}=x_{i}$, for $i=1, \ldots, n$ is the beta distribution with parameters $\alpha+\sum_{i=1}^{n} x_{i}$ and $\beta+n-\sum_{i=1}^{n} x_{i}$.

In particular the family of beta distributions is a conjugate family of prior distributions for samples from a Bernoulli distribution. If the prior distribution of θ is a beta distribution, then the posterior distribution at each stage of sampling will also be a beta distribution, regardless of the observed values in the sample.

Exercise 10.4 Let $\xi(\theta)$ be defined as follows: for constants $\alpha>0$ and $\beta>0$,

$$
\xi(\theta)= \begin{cases}\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta / \theta} & \text { for } \theta>0 \\ 0 & \text { for } \theta \leq 0\end{cases}
$$

A distribution with this probability density function is called an inverse gamma distribution.
(a) Verify that $\xi(\theta)$ is actually a probability density function.
(b) Consider the family of probability distributions that can be represented by a probability density function $\xi(\theta)$ having the given form for all possible pairs of constants $\alpha>0$ and $\beta>0$. Show that this family is a conjugate family of prior distributions for samples from a normal distribution with a known value of the mean μ and an unknown value of the variance θ.

Exercise 10.5 When the motion of a microscopic particle in a liquid or a gas is observed, it is seen that the motion is irregular because the particle collides frequently with other particles. The probability model for this motion, which is called Brownian motion, is as follows: A coordinate system is chosen in the liquid or gas. Suppose that the particle is at the origin of this coordinate system at time $t=0$, and let (X, Y, Z) denote the coordinates of the particle at any time $t>0$. The random variables X, Y, and Z are i.i.d., and each of them has the normal distribution with mean 0 and variance $\sigma^{2} t$. Find the probability that at time $t=2$ the particle will lie within a sphere whose center is at the origin and whose radius is 4σ.

Exercise 10.6 Take $x \in[0,1]$. We say that x is normal if for x in its binary form,

$$
x=\sum_{n \in \mathbb{N}} x_{n} 2^{-n} \quad x_{n} \in\{0,1\}
$$

we have that $\lim _{n \rightarrow \infty} \frac{\left|\left\{1 \leq k \leq n: x_{k}=1\right\}\right|}{n}=\frac{1}{2}$.
(a) Prove that if we have a sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ i.i.d. Bernoulli with parameter $\frac{1}{2}$, then $U=$ $\sum_{n \in \mathbb{N}} U_{n} 2^{-n}$ is an uniform random variable in $[0,1]$
(b) Prove that if $U \sim U(0,1), \mathbb{P}[U$ is normal $]=1$.

