## Probability and Statistics

## Exercise sheet 12

Exercise 12.1 Moore and McCabe (1999) describe an experiment conducted in Australia to study the relationship between taste and the chemical composition of cheese. One chemical whose concentration can affect taste is lactic acid. Cheese manufacturers who want to establish a loyal customer purchases the cheese. The variation in concentrations of chemicals like lactic acid can lead to variation in the taste of cheese. Suppose that we model the concentration of lactic acid in several chunks of cheese are independent normal random variables with mean $\mu$ and variance $\sigma^{2}=0.09$.

Suppose that we sample 20 chunks of cheese. Let

$$
T=\sum_{i=1}^{20}\left(X_{i}-\mu\right)^{2} / 20
$$

where $X_{i}$ is the concentration of lactic acid in $i$ th chunk. What number $c$ satisfies $\mathbb{P}[T \leq c]=0.95$ ?
Exercise 12.2 We toss 100 times a coin and we get 60 head. We want to do a test to know whether the coin is fair.
(a) Test the hypothesis with a 0.01 level of significance. Should this test be one or two-tailed?.
(b) What is the largest amount of heads we should have in 100 tosses so that we cannot discard $H_{0}:=$ "The coin biased towards tail".
(c) Calculate all $p_{0}$ so that the null hypothesis

$$
H_{0}\left(p_{0}\right):=\text { "Probability of head is } p_{0} "
$$

would not be rejected in a test with 0.05 level of significance.
Hint: It will be useful to use the central limit theorem in this exercise.
Exercise 12.3 Let $X$ be a normal random variable with $E[X]=m$ and $\operatorname{Var}(X)=\sigma^{2}=0.0014^{2}$. Let also $X_{i}$ for $i=1, \ldots, n$ be independent random variables that share the same distribution with $X$. The following 12 realisations $x_{i}$ of the random variables $X_{i}$ were recorded:

$$
\begin{aligned}
& 1.007811 .006461 .008011 .008331 .007381 .00687 \\
& 1.007831 .009361 .005641 .005431 .007941 .01060
\end{aligned}
$$

(a) Perform a statistical test at a $\alpha=5 \%$ level of confidence for the null hypothesis $H_{0}: \mu=$ 1.0085, against the alternative hypothesis $H_{A}: \mu=1.008$.
(b) Calculate the power of the test from part a).
(c) What happens to the power calculated in part b) when the alternative hypothesis is changed to $H_{A}: \mu=1.007 ?$

## Exercise 12.4

When testing for bacteriological contamination of milk, 0.01 ml of milk is distributed over a glass surface of $1 \mathrm{~cm}^{2}$. This area is divided into 400 equal-sized squares, and for each square the number of bacterial colonies inside the square is counted with the help of a microscope. Let us assume that the following numbers $N_{k}$ of squares with exactly $k$ colonies are observed:

| $k$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 19 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $N_{k}$ | 56 | 104 | 80 | 62 | 42 | 27 | 9 | 9 | 5 | 3 | 2 | 1 |

We assume that the number of bacterial colonies contained in any square, denoted by $X$, has a Poisson distribution, with unknown parameter $\lambda$.
(a) Find a "natural" estimator of the parameter $\lambda$ of the Poisson distribution, and calculate the expected number of squares with $k$ bacterial colonies, i.e. $400 \cdot \mathbb{P}(X=k)$.
(b) Consider the deviation of $N_{k}$ from its expected value. Do you find that these fluctuations can be considered as random, or do you think that a Poisson distribution doesn't fit here?

To do further analysis, we perform a goodness of fit test:
(c) Calculate for the counts above the quantities

$$
\frac{(\text { Observed count }- \text { Expected count })^{2}}{\text { Expected count }}
$$

for all $k$, and the test statistic $T_{N}=\sum \frac{(\text { Obs.-Exp. })^{2}}{\text { Exp. }}$. Use the group defined by $\{k \geq 8\}$ for the tail of the distribution.
(d) Under the assumption that the error are normally distributed, and that the statistic $T_{N}$ has approximately a $\chi^{2}(8)$ (with 8 degrees of freedom), build a test to determine if the Poisson distribution fits the data. What is the conclusion of the test for the levels of confidence $\alpha=5 \%$ and $1 \%$ ?

Exercise 12.5 Optional Let $\delta$ be a test procedure and $S_{1}$ the critical region of $\delta, \Theta$ the parameter space. The function $\pi(\theta \mid \delta)$, called the power function of the test $\delta$, is determined by the relation

$$
\pi(\theta \mid \delta)=\mathbb{P}\left(X \in S_{1} \mid \theta\right), \quad \text { for } \theta \in \Theta
$$

Suppose that $X_{1}, \cdots, X_{n}$ form a random sample from the normal distribution with unknown mean $\mu$ and known variance 1 , and it is desired to test the following hypotheses:

$$
\begin{array}{ll}
H_{0}: & 0.1 \leq \mu \leq 0.2 \\
H_{1}: & \mu<0.1 \text { or } \mu>0.2
\end{array}
$$

Consider a test procedure $\delta$ such that the hypothesis $H_{0}$ is rejected if either $\overline{X_{n}} \leq c_{1}$ or $\overline{X_{n}} \geq c_{2}$, and let $\pi(\mu \mid \delta)$ denote the power function of $\delta$. Suppose that the sample size is $n=25$. Determine the values of the constants $c_{1}$ and $c_{2}$ such that

$$
\pi(0.1 \mid \delta)=\pi(0.2 \mid \delta)=0.07
$$

## Standard normal (cumulative) distribution function.



## The chi-square distribution

|  | $\operatorname{Pr}(X \leq x)=\int_{0}^{x}$ |  | $\frac{1}{\Gamma(r / 2) 2^{r / 2}} y^{r / 2-1} e^{-y / 2} \mathrm{~d} y$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\operatorname{Pr}($ | x) |  |  |
| $r$ | 0.01 | 0.025 | 0.05 | 0.95 | 0.975 | 0.99 |
| 1 | 0.000 | 0.001 | 0.004 | 3.841 | 5.024 | 6.635 |
| 2 | 0.020 | 0.051 | 0.103 | 5.991 | 7.378 | 9.210 |
| 3 | 0.115 | 0.216 | 0.352 | 7.815 | 9.348 | 11.345 |
| 4 | 0.297 | 0.484 | 0.711 | 9.488 | 11.143 | 13.277 |
| 5 | 0.554 | 0.831 | 1.145 | 11.070 | 12.833 | 15.086 |
| 6 | 0.872 | 1.237 | 1.635 | 12.592 | 14.449 | 16.812 |
| 7 | 1.239 | 1.690 | 2.167 | 14.067 | 16.013 | 18.475 |
| 8 | 1.646 | 2.180 | 2.733 | 15.507 | 17.535 | 20.090 |
| 9 | 2.088 | 2.700 | 3.325 | 16.919 | 19.023 | 21.666 |
| 10 | 2.558 | 3.247 | 3.940 | 18.307 | 20.483 | 23.209 |
| 11 | 3.053 | 3.816 | 4.575 | 19.675 | 21.920 | 24.725 |
| 12 | 3.571 | 4.404 | 5.226 | 21.026 | 23.337 | 26.217 |
| 13 | 4.107 | 5.009 | 5.892 | 22.362 | 24.736 | 27.688 |
| 14 | 4.660 | 5.629 | 6.571 | 23.685 | 26.119 | 29.141 |
| 15 | 5.229 | 6.262 | 7.261 | 24.996 | 27.488 | 30.578 |
| 16 | 5.812 | 6.908 | 7.962 | 26.296 | 28.845 | 32.000 |
| 17 | 6.408 | 7.564 | 8.672 | 27.587 | 30.191 | 33.409 |
| 18 | 7.015 | 8.231 | 9.390 | 28.869 | 31.526 | 34.805 |
| 19 | 7.633 | 8.907 | 10.117 | 30.144 | 32.852 | 36.191 |
| 20 | 8.260 | 9.591 | 10.851 | 31.410 | 34.170 | 37.566 |
| 21 | 8.897 | 10.283 | 11.591 | 32.671 | 35.479 | 38.932 |
| 22 | 9.542 | 10.982 | 12.338 | 33.924 | 36.781 | 40.289 |
| 23 | 10.196 | 11.689 | 13.091 | 35.172 | 38.076 | 41.638 |
| 24 | 10.856 | 12.401 | 13.848 | 36.415 | 39.364 | 42.980 |
| 25 | 11.524 | 13.120 | 14.611 | 37.652 | 40.646 | 44.314 |
| 26 | 12.198 | 13.844 | 15.379 | 38.885 | 41.923 | 45.642 |
| 27 | 12.879 | 14.573 | 16.151 | 40.113 | 43.195 | 46.963 |
| 28 | 13.565 | 15.308 | 16.928 | 41.337 | 44.461 | 48.278 |
| 29 | 14.256 | 16.047 | 17.708 | 42.557 | 45.722 | 49.588 |
| 30 | 14.953 | 16.791 | 18.493 | 43.773 | 46.979 | 50.892 |

