Probability and Statistics

Exercise sheet 13

Exercise 13.1 Consider the null hypothesis $X \sim f(x)dx$ and the alternative $X \sim f(x-1)dx$ for the following cases:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

$$f(x) = \frac{1}{\pi(1+x^2)}.$$

Compute the form of the rejection of the likelihood area ratio test (Neyman-Pearson Lemma). Comment the difference.

Exercise 13.2

Let $(X_i)_{i=1}^n$ be an i.i.d F-distributed sequence. Let F be absolutely continuous. The Sign test is a test where the null hypothesis is that the median of X is m, i.e.

$$F^{-1}(m) = \frac{1}{2}.$$

Use the Duality Theorem (cf. Theorem 6.4 LN, or Probability overview) to construct the test with significance level $\alpha = 0.05$.

Exercise 13.3 We want to investigate the effect of an outlier on confindence intervals. Let X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$ with unknown σ .

- (a) Give the two-sided confidence interval for the unknown parameter μ with level α .
- (b) How does the confidence interval behaves for $x_1 \to \infty$ and fixed x_2, \ldots, x_n ? Hint: For every $c \in \mathbb{R}$ it holds that $\sum_{i=1}^n (x_i - c)^2 = \sum_{i=1}^n (x_i - \overline{x})^2 + n(c - \overline{x})^2$.

Exercise 13.4 In a study on the reliability of ball-bearing, two samples of 10 pieces each of two different types of ball-bearings were tested. The number of rotation (in millions) were

Typ I	3.03	5.53	5.60	9.30	9.92	12.51	12.95	15.21	16.04	16.84
Typ II	3.19	4.26	4.47	4.53	4.67	4.69	12.78	6.79	9.37	12.75

Before the realisation of this test, it was not clear which type was more reliable.

- (a) Are we dealing with a paired sample ?
- (b) Build a t-Test for the null-hypothesis "the expected number of rotations until break-down is the same for the two types of ball-bearing" with level 0.05%.

Exercise 13.5 Let $(X_i)_{i=1}^{2n+1}$ a sequence of i.i.d normal random variables with mean μ and variance σ^2 unknown. We take two different estimators for μ :

$$T_{2n+1}^{(1)} = \frac{1}{2n+1} \sum_{i=1}^{2n+1} X_i,$$

$$T_{2n+1}^{(2)} = X_{(n+1)},$$

where $X_{(1)} < X_{(2)} < \dots < X_{(2n+1)}$ are the ordered results.

Updated: May 30, 2017

(a) With the help of the Central Limit Theorem find sequences $c_n^{(1)}$ and $c_n^{(2)}$ so that

$$\mathbb{P}\left(|T_{2n+1}^{(i)} - \mu| \le c_n^{(i)}\right) \to 0.95.$$

Hint: You may use as well the result of Example 4.6 from the lecture notes.

(b) Find $q \in \mathbb{R}^+$ so that

$$\frac{c_{nq}^2}{c_n^1} \to 1,$$

how can we interpret, in words, q?.

Exercise 13.6 LEAST-SQUARES LINE.

(a) Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a set of *n* points of \mathbb{R}^2 and the x_i 's are not all the same. Show that the straight line defined by the equation $y(x) = \hat{\beta}_0 + \hat{\beta}_1 x$ that minimizes the sum of the squares of the vertical deviations of all the points from the line has the following slope and intercept, i.e. $(\hat{\beta}_0, \hat{\beta}_1)$ minimizes

$$I(\beta_0, \beta_1) := \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i)^2$$

over all choices of $(\beta_0, \beta_1) \in \mathbb{R}^2$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2},\\ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

The minimizing line is called the *least-squares line*. Remark that the least-squares line passes through the point (\bar{x}, \bar{y}) .

(b) Fit a straight line of the form $y = \beta_0 + \beta_1 x$ to these values by the method of least squares (with your calculator or Excel).

Ta	ble 1:	Data for	Ex 1.(b)
	i	x_i	y_i
	1	0.5	40
	2	1.0	41
	3	1.5	43
	4	2.0	42
	5	2.5	44
	6	3.0	42
	7	3.5	43
	8	4.0	42

Exercise 13.7 FITTING A POLYNOMIAL BY METHODE OF LEAST SQUARES Suppose now that instead of simply fitting a straight line to n plotted points, we wish to fit a polynomial of degree k $(k \ge 2)$. such a polynomial will have the following form:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k.$$

The method of least squares specifies that the constants β_0, \dots, β_k should be chosen that the sum

$$Q(\beta_0, \cdots, \beta_k) = \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i + \cdots + \beta_k x_i^k)]^2$$

of the squares of the vertical deviations of the points from the curve is a minimum.

- (a) Which equation system should a minimizer $\hat{\beta}_0, \dots, \hat{\beta}_k$ satisfy?
- (b) Fit a parabola (polynomial of degree 2) to the 10 points given in the table.

Ta	ble 2:	Data for	Ex-2.(b)
	i	x_i	y_i
	1	1.9	0.7
	2	0.8	-1.0
	3	1.1	-0.2
	4	0.1	-1.2
	5	-0.1	-0.1
	6	4.4	3.4
	7	4.6	0.0
	8	1.6	0.8
	9	5.5	3.7
	10	3.4	2.0

Exercise 13.8 GAUSS-MARKOV THEOREM We want to study linear regression models. We do m experiments with explanatory variables $(x_i)_{i=1}^m \subseteq \mathbb{R}^n$ and with a scalar dependent variable $(y_i)_{i=1}^n \subseteq \mathbb{R}$. We suppose that for all i, the underlying model is given by

$$y_i = \beta \cdot x_i + \epsilon_i \quad \beta \in \mathbb{R}^n \tag{1}$$

where (ϵ_i) is a i.i.d sequence such that $\mathbb{E}(\epsilon_i) = 0$ and $\operatorname{Var}(\epsilon_i) = \sigma^2$. We want to estimate β . We say that $\tilde{\beta}$ is an unbiased estimator of β if

 $\mathbb{E}\left(\tilde{\beta}\right) = \beta.$

Additionally we say that $\tilde{\beta}$ is linear if there exists a matrix, D, only depending on X such that $\tilde{\beta} = DY$. We will also say that a matrix $A \leq B$ if B - A is a positive semidefinite matrix.

(a) Show that (1) is equivalent to

$$Y = X\beta + \epsilon,$$
(2)
where $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}, X = \begin{pmatrix} x_1^t \\ \vdots \\ x_m^t \end{pmatrix} \text{ and } \epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_m \end{pmatrix}.$

- (b) Show that the normal linear regression model (example 3.1 of the Skript) is a linear unbiased estimator. We will call its associated matrix K.
- (c) Compute the covariance matrix of $\overline{\beta}$, the estimator of the normal linear regression model. **Hint:** Remember that if $Z \in \mathbb{R}^n$ is a random variable and C is a matrix then $V(CZ) = CZC^t$, where $Var(\cdot)$ is the covariance matrix.
- (d) Show that if $\tilde{\beta} = (K+C)Y$ is an unbiased estimator, then CX = 0.
- (e) Show that the covariance matrix of $\tilde{\beta}$ is such that

$$\operatorname{Var}(\beta) \gtrsim \operatorname{Var}(\beta)$$

Updated: May 30, 2017