Probability and Statistics

Exercise sheet 2

Exercise 2.1 The birthday paradox. Take a urn with N balls numbered with integers from $\{1, \ldots, N\}$. Perform the experiment of extracting a ball with replacement n times.
(a) Let $A_{n}:=$ "The first n balls extracted are different". Calculate $\mathbb{P}\left(A_{n}\right)$ (use a Laplace model).
(b) Prove the following inequalities:

$$
1-\frac{n(n-1)}{2 N} \leq \mathbb{P}\left(A_{n}\right) \leq \exp \left(-\frac{n(n-1)}{2 N}\right)
$$

(c) Calculate $n_{\min }=\inf \left\{n \in \mathbb{N}: \mathbb{P}\left(A_{n}\right)<\frac{1}{2}\right\}$ for $N=365$. Relate this problem with the Birthday Problem:" Find the probability that, in a group of n people, there is at least one pair who have the same birthday".

Exercise 2.2 Posterior probabilities. Suppose that a box contains three coins and that for each coin there is a different probability that we obtain head on a toss. Let p_{i} denote the probability of a head when the i th coin is tossed $(i=1, \ldots, 3)$, and suppose that $p_{1}=1 / 4, p_{2}=1 / 2, p_{3}=3 / 4$.
(a) Suppose that one coin is selected uniformly at random from the box and when it is tossed once, a head is obtained. What is the posterior probability that the i th coin was selected?
(b) If the same coin were tossed again, what would be the probability of obtaining another head?
(c) Prove the Conditional Bayes' Theorem: Let $\left(A_{i}\right)_{i=1 \cdots k}$ be a partition of Ω, and B, C are events in Ω,

$$
\mathbb{P}\left(A_{i} \mid B \cap C\right)=\frac{\mathbb{P}\left(A_{i} \mid B\right) \mathbb{P}\left(C \mid A_{i} \cap B\right)}{\sum_{j=1}^{k} \mathbb{P}\left(A_{j} \mid B\right) \mathbb{P}\left(C \mid A_{j} \cap B\right)}
$$

(d) If the same coin gives another head at the second toss, what is the posterior probability that the i th coin was selected?
(e) Assume that it is always the same coin tossed, and we get always head. What is the recurrence relation of the posterior probability after n tosses that the i th coin was selected?

Exercise 2.3 Introduction to Bayesian Statistics. We have m urns with red and white balls inside. The urn $i \in\{1, . . m\}$ has $2 i-1$ red balls and $2 m-2 i+1$ white ones. We randomly (uniformly) select an urn and extract with replacement n times. Define:

$$
X_{j}:= \begin{cases}1 & \text { If the } j \text {-th ball is red } \\ 0 & \text { If the } j \text {-th ball is white. }\end{cases}
$$

We are interested in the following problem " Given that you see $\left(X_{j}\right)_{j=1}^{n}$, can you say from which urn the balls where taken?"
(a) Compute $\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ for $x_{i} \in\{0,1\}$. Are $X_{1}, . ., X_{n}$ independent?
(b) Compute the following probability:
$\mathbb{P}\left(\right.$ The urn chosen is $\left.i \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$.
Show that this only depends on the number or red balls, i.e., $k=\sum_{i=1}^{n} x_{i}$.
(c) Compute $\mathbb{P}\left(\right.$ The urn chosen is $\left.i \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ for $m=3$ and $n=3$.

Exercise 2.4 We are interested in studying the probability of success of a student at an entrance exam to two departments of a university. Consider the following events

$$
\begin{aligned}
& A=\{\text { The student is man }\} \\
& A^{c}=\{\text { The student is woman }\} \\
& B=\{\text { The student applied for department I }\} \\
& B^{c}=\{\text { The student applied for department II }\} \\
& C=\{\text { The student was accepted }\} \\
& C^{c}=\{\text { The student wasn't accepted }\}
\end{aligned}
$$

We assume that we have the following probabilities (Berkeley 1973):

$$
\begin{aligned}
& \mathbb{P}(A)=0.73 \\
& \mathbb{P}(B \mid A)=0.69, \quad \mathbb{P}\left(B \mid A^{c}\right)=0.24 \\
& \mathbb{P}(C \mid A \cap B)=0.62, \quad \mathbb{P}\left(C \mid A^{c} \cap B\right)=0.82, \quad \mathbb{P}\left(C \mid A \cap B^{c}\right)=0.06, \quad \mathbb{P}\left(C \mid A^{c} \cap B^{c}\right)=0.07
\end{aligned}
$$

(a) Draw a tree describing the situation with the probabilities associated.
(b) Consider the following probabilities $\mathbb{P}[C \mid A \cap B]=0.62$,
$\mathbb{P}\left[C \mid A^{c} \cap B\right]=0.82, \mathbb{P}\left[C \mid A \cap B^{c}\right]=0.06, \mathbb{P}\left[C \mid A^{c} \cap B^{c}\right]=0.07$. With this information, do you think that in this examination women are disadvantaged?
(c) Compute $\mathbb{P}(C \mid A)$ and $\mathbb{P}\left(C \mid A^{c}\right)$. Does this coincide with your answer for b)?

Exercise 2.5 (Optional) Let $G=(V, K)$ be an arbitrary finite and undirected graph with vertices V and edges K, i.e., V is a finite set and $K \subseteq\{\{x, y\} \subseteq V: x \neq y\}$. The MAX-CUT problem is to find a subset $A \subseteq V$ such that the number of edges connecting A and $A^{c}\left(K_{A}\right)$ is maximal, i.e., $K_{A}=\left\{\{x, y\} \in K: x \in A, y \in A^{c}\right\} \rightarrow \max !$. We want to show that there exists $A \subseteq V$ so that $\left|K_{A}\right| \geq \frac{1}{2}|K|$.
(a) Choose $A \subseteq V$ to be a random set uniformly in 2^{V} (in other words, choose an element A of the power set of V as follows: for every $v \in V, A$ contains v with probability $1 / 2)$. Calculate $\mathbb{P}\left(e \in K_{A}\right)$, i.e. $\mathbb{P}\left(\left\{A: e \in K_{A}\right\}\right)$
(b) Using the linearity property of expectation show that

$$
\mathbb{E}\left[\left|K_{A}\right|\right]=\frac{1}{2}|K|
$$

(c) Show that there exists an A so that $\left|K_{A}\right| \geq \frac{1}{2}|K|$.

Exercise 2.6 (Optional) Monty hall problem. You are on a game show, and you're given the choice of three doors: behind one door is a car; behind the others are goats. You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another, say No. $j(j \in\{2,3\})$, behind which is a goat. He then tells you, "Do you want to pick door No. $l(l \in\{2,3\}, l \neq j)$?" Is it to your advantage to choose door l ?

To answer this question, we define the following events

$$
\begin{array}{lr}
B_{i}=\text { "The car is behind door i." } & (i=1,2,3), \\
A_{j}=\text { "Moderator open door j." } & (j=2,3) .
\end{array}
$$

(a) Define a natural model for the problem. In other words, define Ω and set the probabilities $\mathbb{P}\left(B_{i}\right)$ for $i \in\{1,2,3\}$ and $\mathbb{P}\left(A_{j} \mid B_{i}\right)$ for $i \in\{1,2,3\}$ and $j \in\{2,3\}$.
(b) Compute, using the Bayes formula, $\mathbb{P}\left(B_{1} \mid A_{j}\right)$ for $j \in\{2,3\}$. Does opening the other door with a goat behind changes the probability that the car is behind door number 1 ?
(c) Would you modify your choice?

