Probability and Statistics

Exercise sheet 4

Exercise 4.1 σ -ALGEBRAS.

- (a) Let $(\mathcal{A}_i)_{i \in I}$ be a family of σ -algebras. Show that $\bigcap_{i \in I} \mathcal{A}_i$ is a σ -Algebra.
- (b) Prove that if \mathcal{A}_1 and \mathcal{A}_2 are σ -algebras, $\mathcal{A}_1 \cup \mathcal{A}_2$ is a σ -Algebra iff $\mathcal{A}_1 \subseteq \mathcal{A}_2$ or $\mathcal{A}_2 \subseteq \mathcal{A}_3$.
- (c) Let \mathcal{A} be a σ -algebra and Ψ an event. For $i \in \mathbb{N}$ define $A_i \in \mathcal{A}$ as "At time *i* the event Ψ occurs". Write, with the help of the A_i 's the following sets. Additionally show that they belong to \mathcal{A} .
 - 1. " Ψ never occurs"
 - 2. " Ψ occurs infinitely many times".
 - 3. " From a point in time onward Ψ never occurs".
 - 4. " Ψ occurs exactly twice".
 - 5. " Ψ occurs in total an odd number of times".

Which of them belong to the tail σ -algebra, i.e.,

$$\mathcal{A}_{\infty} := \bigcap_{n \in \mathbb{N}} \sigma(\{A_k : k \ge n\})?$$

Exercise 4.2 BOREL CANTELLI.

- (a) Construct a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and a series of measurable sets $(A_n)_{n \in \mathbb{N}}$ with $\sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = \infty$ and $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k\right) = 0.$
- (b) Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Take $(U_n)_{n \in \mathbb{N}}$ a series of uniform independent random variables on (0, 1), i.e., for $0 \le x \le 1$, $\mathbb{P}(U_n \in [0, x]) = x$.
 - (i) Show that:

$$\mathbb{P}\left((\exists \alpha > 1) \liminf n^{\alpha} U_n \in \mathbb{R}\right) = 0.$$

Hint: It may be useful to define, for $\alpha > 1$ $A_n^{\alpha} := \{U_n < n^{-\alpha}\}$. Do not forget that the countable union of sets of probability 0 has probability 0.

(ii) Prove that:

$$\mathbb{P}\left(\liminf nU_n \in \mathbb{R}\right) > 0.$$

Exercise 4.3 Let $(\{0,2\}^{\mathbb{N}}, \mathcal{A}, \mathbb{P})$ be the model of infinite tossing of coins (Lecture notes Satz 3.2, p. 37). We consider the random variable:

$$\begin{array}{rccc} X: & \{0,2\}^{\mathbb{N}} & \longrightarrow & [0,1] \\ & \omega = (\omega_1, \omega_2, \ldots) & \mapsto & X(\omega) = \sum_{n=1}^{\infty} \frac{\omega_n}{3^n} \end{array}$$

- (a) Prove that X is measurable.
- (b) Show that the cumulative distribution function of X is continuous.

- (c) Prove that there exist disjoint intervals $I_k \subseteq [0, 1]$ so that F is constant in I_k and $\lambda(\bigcup_{k=1}^{\infty} I_k) = 1$. (Where λ is the Lebesgue measure) Hint:

 - X(ω) = ∑_{n=1}[∞] X_n(ω)/3ⁿ
 F is constant on X({0,2}ⁿ)^c.