## Probability and Statistics

## Exercise sheet 5

Exercise 5.1 The Bertrand's paradox. Consider an equilateral triangle inscribed in a circle of radius 1. Suppose a chord of the circle is chosen at random. What is the probability that the chord is longer than a side of the triangle?. To solve this, try the following probability models:
(a) The "random endpoints" method: Choose two uniform random points on the circumference of the circle and draw the chord joining them, i.e., let $U, V \sim U(0,1)$, define $X=e^{U 2 \pi i}, Y=e^{V 2 \pi i}$ and take the chord connecting $X$ and $Y$.
(b) The "random radius" method: Choose a radius of the circle, choose a uniform point on the radius and construct the chord through this point and perpendicular to the radius, i.e., choose a radius and choose $r \sim U(0,1)$, take the point on the radius that is at distance $r$ from the center and the chord will be the only chord perpendicular to this point.
(c) The "random midpoint" method: Choose a point uniformly anywhere within the circle and construct a chord with the chosen point as its midpoint, i.e., take $(x, y) \sim U(B(0,1))$ and take the chord whose midpoint is $(x, y)$.
(d) Is this a contradiction?

Exercise 5.2 Let $X_{1}$ and $X_{2}$ be two random variables following a normal distribution with mean $\mu_{1}$ and variance $\sigma_{1}^{2}$ (resp. with mean $\mu_{2}$ and variance $\sigma_{2}^{2}$ ). Prove that if $X_{1}$ is independent of $X_{2}$ then $X_{1}+X_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

Exercise 5.3 Let $X$ be a standard normal random variable.
(a) Prove that if we take $Y:=X^{2}$, then $f_{Y}(y)=c e^{-y / 2} y^{-1 / 2} \mathbb{1}_{y \geq 0}$ (We say that $Y$ is distributed according to a $\chi$-squared with one degree of freedom).
(b) If $Y_{1}$ and $Y_{2}$ are two independent copies of $Y$, prove that $f_{Y_{1}+Y_{2}}(x)=c_{2} e^{-x / 2} \mathbb{1}_{x \geq 0}$. What is the name of this distribution.
(c) With the help of induction prove that $\sum_{i=1}^{n} Y_{i}$, where $\left(Y_{i}\right)_{i=1}^{n}$ are independent copies of $Y$, has as a density function

$$
f_{\sum_{i=1}^{n} Y_{i}}(x)=c_{n} x^{\frac{n}{2}-1} e^{-\frac{x}{2}} \mathbb{1}_{\{x \geq 0\}} .
$$

This is call a $\chi$-squared distribution with n degrees of freedom.
Exercise 5.4 Memorylessness of exponential random variables. We say that a random variable $X$ has an exponential distribution of parameter $\lambda$ (write it $\mathcal{E}(\lambda)$ ) if for all $t \geq 0$,

$$
\mathbb{P}(X \geq t)=e^{-\lambda t}
$$

(a) Find the density function (with respect to the Lebesgue Measure) of an exponential random variable. Calculate its mean and its variance.
(b) Show that if $X_{1} \sim \mathcal{E}\left(\lambda_{1}\right), X_{2} \sim \mathcal{E}\left(\lambda_{2}\right)$ and $X_{1}$ is independent of $X_{2}$, then $\min \left\{X_{1}, X_{2}\right\} \sim$ $\mathcal{E}\left(\lambda_{1}+\lambda_{2}\right)$.
(c) Show that

$$
\mathbb{P}(X \geq t+h \mid X \geq h)=\mathbb{P}(X \geq t)
$$

This is called the memoryless property of exponential random variables. We want to prove that the only random variable that has this property is the exponential random variable. Suppose that $Y: \Omega \mapsto \mathbb{R}^{+}$has the memoryless property, i.e.,

$$
\mathbb{P}(Y \geq t+h \mid Y \geq h)=\mathbb{P}(Y \geq t)
$$

(d) Define $G(t):=\mathbb{P}(Y \geq t)$ and prove that $G(t+h)=G(t) G(h)$.
(e) Prove that for all $m, n \in \mathbb{N}, G\left(\frac{m}{n}\right)=G(1)^{\frac{m}{n}}$.
(f) Using the monotone property of $G$ prove that for all $t \geq 0, G(t)=G(1)^{t}$. Conclude that $Y$ has an exponential distribution and give its parameter.

Exercise 5.5 (optional: conditional expectation and tower property) Suppose that internet users access a particular Web site according to a Poisson process with rate $\Lambda$ per hour, but $\Lambda$ is unknown. The Web site maintainer believes that $\Lambda$ has a continuous distribution with probability density function:

$$
f(\lambda)=\left\{\begin{array}{lc}
2 e^{-2 \lambda} & \text { for } \lambda>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $X$ be the number of users who access the Web site during a one-hour period. If $X=1$ is observed, find the conditional probability density function of $\Lambda$ given $X=1$.

