Probability and Statistics

Exercise sheet 6

Exercise 6.1 Take X_n i.i.d random variable so that

$$\mathbb{E}(X_1) = 1, \quad \operatorname{Var}(X_1) = 2,$$

and define $S_n := \sum_{i=1}^n X_i$.

(a) Use Chebyshev-inequality to estimate

$$\mathbb{P}\left(\left|\frac{S_n}{n} - 1\right| \le 0.5\right).$$

What is the value of the bound when n = 40.

(b) Use the Central Limit Theorem to estimate

$$\mathbb{P}\left(\left|\frac{S_n}{n} - 1\right| \le 0.5\right).$$

What is the value of the bound when n = 40.

Exercise 6.2 Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(Z_n)_{n \in \mathbb{N}}$ a sequence of random variables.

(a) Prove that if $Z_n \xrightarrow{\mathbb{P}} c \in \mathbb{R}$, then for all bounded and continuous functions f

$$\mathbb{E}\left(f(Z_n)\right) \to f(c).$$

(b) Show that if $Z_n \to c \in \mathbb{R}$ in distribution, then $Z_n \xrightarrow{\mathbb{P}} c$.

Exercise 6.3 Consider the probability space $(\Omega, \mathcal{A}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda|_{[0, 1]})$, where $\lambda|_{[0, 1]}$ is the Lebesgue measure over [0, 1]. Let $X_n(\omega) = \mathbb{1}_{A_n}(\omega)$ be a sequence of random variables with $A_n \in \mathcal{B}([0, 1])$.

- (a) What condition on the sets $(A_n)_{n \in \mathbb{N}}$ is necessary for the convergence in probability under \mathbb{P} of the sequence $(X_n)_{n \in \mathbb{N}}$ to 0 ?
- (b) Write the event $\{\omega : X_n(\omega) \to 0\}$ with the sets $(A_n)_{n \in \mathbb{N}}$.
- (c) Find a sequence $(A_n)_{n\in\mathbb{N}}$ of events such that $X_n \xrightarrow{\mathbb{P}} 0$ but $\{\omega : X_n(\omega) \to 0\} = \emptyset$.

Exercise 6.4 Let $(X_i)_{i\geq 1}$ be a sequence of random variables with

$$\mathbb{E}(X_i) = \mu \quad \forall i,$$

$$\operatorname{Var}(X_i) = \sigma^2 < \infty \quad \forall i,$$

$$\operatorname{Cov}(X_i, X_j) = R(|i - j|) \quad \forall i, j,$$

where R is a real function. Define $S_n := \sum_{i=1}^n X_i$.

Updated: March 31, 2017

- (a) Prove that if $\lim_{k\to\infty} R(k) = 0$ then $\lim_{n\to\infty} \frac{S_n}{n} = \mu$ in probability.
- (b) Prove that if $\sum_{k \in \mathbb{N}} |R(k)| < \infty$ then $\lim_{n \to \infty} n \operatorname{Var}(\frac{S_n}{n})$ exists.

Exercise 6.5 (Optional)

- (a) Let μ_n and ν_n be two sequences of probability measure on \mathbb{R} , and $\epsilon_n \in (0,1)$ with $\epsilon_n \to 0$. Prove that if $\mu_n \to \mu$ in distribution, then $(1 - \epsilon_n)\mu_n + \epsilon_n\nu_n \to \mu$ in distribution.
- (b) Construct with the help of (a) a sequence μ_n so that $\mu_n \to \mu$ in distribution but $\lim_{n\to\infty} \int |x| d\mu_n(x) \neq \int |x| d\mu(x)$.
- (c) Prove that if $\mu_n \to \mu$ in distribution and $\sup_n \int x^2 d\mu_n(x) = K < \infty$ then

$$\int |x| d\mu_n(x) \to \int |x| d\mu(x).$$

HINT: For all M prove that

$$\int \min\{|x|, M\} d\mu_n(x) \to \int \min\{|x|, M\} d\mu(x)$$

and that

$$0 \le \int |x| d\mu_n(x) - \int \min\{|x|, M\} d\mu_n(x) \le K/M.$$